Loading...
Search for: supercapacitor-application
0.005 seconds

    One-step fabrication of electrochemically reduced graphene oxide/nickel oxide composite for binder-free supercapacitors

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 39 , 2016 , Pages 17496-17505 ; 03603199 (ISSN) Shahrokhian, S ; Mohammadi, R ; Asadian, E ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    A three-dimensional (3D) graphene/Nickel oxide (ERGO/NiO) composite electrode have been fabricated directly on a Nickel foam substrate via a one-step electrochemical co-deposition in an aqueous solution containing Nickel nitrate and GO. By using this simple and one-step electrochemical deposition, it is possible to produce binder-free composite electrodes with improved electrochemical properties using a low-cost, facile and scalable technique. It is observed from FE-SEM images that graphene oxide sheets affect the electrodeposition of nickel oxide. The optimized ErGO/NiO electrode developed in this work exhibits high charge storage capacity with a specific capacitance of 1715.5 F g−1 at... 

    Electric field enhanced synthesis of copper hydroxide nanostructures for supercapacitor application

    , Article Nano ; Volume 12, Issue 1 , 2017 ; 17932920 (ISSN) Sepahvand, S ; Ghasemi, S ; Sanaee, Z ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2017
    Abstract
    Electric field enhanced approach has been used to synthesize different copper hydroxide morphologies as high-performance supercapacitors electrode materials. Employing this efficient, simple and low cost method, various shapes such as rod, flower and cube with an average grain size of 30nm to 1μm were obtained on the copper substrate. The results revealed that applied electric field considerably accelerates the formation time of nanostructures from several days to close to 1min, where some of the desired nanostructures were obtained even in 1s. The electrochemical properties of different morphologies were compared using cyclic voltammograms and charge/discharge tests and electrochemical... 

    Hybrid of cerium dioxide nanoparticles/reduced graphene oxide as an electrode material for supercapacitor applications

    , Article Journal of Physics and Chemistry of Solids ; Volume 159 , 2021 ; 00223697 (ISSN) Salarizadeh, P ; Askari, M. B ; Beydaghi, H ; Rastgoo Deylami, M ; Rozati, S. M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, we prepared cerium oxide (CeO2) hybridized with reduced graphene oxide (rGO) nanosheets using the hydrothermal method. CeO2 and CeO2/rGO were evaluated as electrode materials for use in supercapacitor applications. The structure and morphology of the synthesized materials were investigated. Cyclic voltammetry tests determined a high specific capacitance of 581 F g−1 for CeO2/rGO at a scan rate of 10 mV s−1 in 2 M KOH. In addition, the CeO2/rGO electrode retained 91 % of its initial capacitance after 5000 consecutive cycles, thereby indicating its excellent electrochemical stability. The excellent stability of CeO2/rGO was due to a synergistic effect between CeO2 and rGO. CeO2... 

    A high performance supercapacitor based on graphene/polypyrrole/Cu2O-Cu(OH)2 ternary nanocomposite coated on nickel foam

    , Article Journal of Physical Chemistry C ; Volume 121, Issue 12 , 2017 , Pages 6508-6519 ; 19327447 (ISSN) Asen, P ; Shahrokhian, S ; Sharif University of Technology
    Abstract
    A simple and low-cost electrochemical deposition method is used to prepare reduced graphene oxide/polypyrrole/Cu2O-Cu(OH)2 (RGO/PPy/Cu2O-Cu(OH)2) ternary nanocomposites as the electrode material for supercapacitor application. First, graphene oxide-polypyrrole (GO/PPy) nanocomposite is electrochemically synthesized on Ni foam by electro-oxidation of pyrrole monomer in an aqueous solution containing GO and Tiron. Subsequently, the GO/PPy film is converted to the corresponding reduced form (RGO/PPy) by an effective and eco-friendly electrochemical reduction method. Then, a thin layer of Cu2O-Cu(OH)2 is formed on RGO/PPy film by chronoamperometry. The RGO/PPy/Cu2O-Cu(OH)2 nanocomposite is... 

    Ternary nanostructures of Cr2O3/graphene oxide/conducting polymers for supercapacitor application

    , Article Journal of Electroanalytical Chemistry ; Volume 823 , 2018 , Pages 505-516 ; 15726657 (ISSN) Asen, P ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Abstract
    In this work, nanostructured composites of Cr2O3-graphene oxide (Cr2O3/GO) with conducting polymers; polyaniline (PANI) and polypyrrole (PPy) with the shape of cauliflower were synthesized via s simple and low cost one-step chronoamperometry method. The structures and morphologies of the resulting ternary nanocomposites were characterized by using Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The electrochemical capacitive properties of the prepared nanocomposites were evaluated by using cycle voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The... 

    Iron‑vanadium oxysulfide nanostructures as novel electrode materials for supercapacitor applications

    , Article Journal of Electroanalytical Chemistry ; Volume 818 , 2018 , Pages 157-167 ; 15726657 (ISSN) Asen, P ; Shahrokhian, S ; Iraji Zad, Azam ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Iron‑vanadium oxysulfide (Fe-VO-S) nanostructures with different Fe:VO atomic ratios are synthesized by a facile and low cost electrochemical deposition method. The synthesis of the various samples is confirmed by the physicochemical characterizations such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). For different Fe-VO-S nanostructures, the correlation between the physicochemical and the electrochemical properties is investigated. It is found that the Fe:VO atomic ratio has an important effect on the structure and size of the resulted particles.... 

    Solution synthesis of CuSbS2 nanocrystals: a new approach to control shape and size

    , Article Journal of Alloys and Compounds ; Volume 736 , 2018 , Pages 190-201 ; 09258388 (ISSN) Moosakhani, S ; Sabbagh Alvani, A. A ; Mohammadpour, R ; Ge, Y ; Hannula, S. P ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Chalcostibite copper antimony sulfide (CuSbS2) micro- and nanoparticles with a different shape and size have been prepared by a new approach to hot injection route. In this method, sulfur in oleylamine (OLA) is employed as a sulfonating agent providing a simple route to control the shape and size of the particles, which enables the optimization of CuSbS2 for a variety of applications. The sulfur to metallic precursor ratio appears to be one of the most effective parameters along with the temperature and time for controlling the size and morphology of the particles. The growth mechanism study shows in addition to the CuSbS2 phase the presence of not previously observed intermediate phases... 

    One step synthesis of SnS2-SnO2 nano-heterostructured as an electrode material for supercapacitor applications

    , Article Journal of Alloys and Compounds ; Volume 782 , 2019 , Pages 38-50 ; 09258388 (ISSN) Asen, P ; Haghighi, M ; Shahrokhian, S ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    SnS2-SnO2 nano-heterostructures are synthesized with two different precursors of thioacetamide (TAA) and thiourea (TU) at various solvent ratios (SR) of ethanol and water by using a facile, economical, scalable, and cost-effective solvothermal method. The obtained products have been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), and Brunauer–Emmet–Teller (BET) techniques. It is found that different precursors and various SR values have an influence on the composition and morphologies of the prepared nanostructures, leading to variation in capacitive behavior of the fabricated electrodes.... 

    Inkjet-printing technology for supercapacitor application: Current state and perspectives

    , Article ACS Applied Materials and Interfaces ; Volume 12, Issue 31 , 2020 , Pages 34487-34504 Sajedi Moghaddam, A ; Rahmanian, E ; Naseri, N ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    Inkjet-printing (IJP) technology is recognized as a significant breakthrough in manufacturing high-performance electrochemical energy storage systems. In comparison to conventional fabrication protocols, this printing technique offers various advantages, such as contact-less high-resolution patterning capability; low-cost, controlled material deposition; process simplicity; and compatibility with a variety of substrates. Due to these outstanding merits, significant research efforts have been devoted to utilizing IJP technology in developing electrochemical energy storage devices, particularly in supercapacitors (SCs). These attempts have focused on fabricating the key components of SCs,... 

    Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications

    , Article Journal of Solid State Electrochemistry ; 2017 , Pages 1-14 ; 14328488 (ISSN) Asen, P ; Shahrokhian, S ; Zad, A. I ; Sharif University of Technology
    Abstract
    Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless steel (SS) as the substrate. The Fe3+-Zn2+-PANI/GO nanocomposite is characterized using X-ray diffraction as well as Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. Also, cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are used to study the electrochemical performance of the as-prepared electrode materials. Significantly, the Fe3+-Zn2+-PANI/GO nanocomposite exhibits a specific... 

    Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors

    , Article International Journal of Hydrogen Energy ; 2017 ; 03603199 (ISSN) Shahrokhian, S ; Rahimi, S ; Mohammadi, R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Here in, for the first time, we report a new and simple procedure for preparing reduced graphene oxide/nickel-cobalt double layered hydroxide composite on the nickel foam (Ni-Co LDH/rGO/NF) via a fast and simple two-step electrochemical method including potentiostatic routes in the presence of CTAB as a cationic surfactant. Graphene oxide coated nickel foam prepared by simple immersion method. After that, the prepared electrode reduced electrochemically to obtain rGO/NF electrode. Finally, the rGO/NF electrode was used as cathode for electrodeposition of Ni-Co LDH in the presence of CTAB as cationic surfactant. The prepared electrodes were characterized by field emission scanning electron... 

    Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors

    , Article International Journal of Hydrogen Energy ; Volume 43, Issue 4 , 2018 , Pages 2256-2267 ; 03603199 (ISSN) Shahrokhian, S ; Rahimi, S ; Mohammadi, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Here in, for the first time, we report a new and simple procedure for preparing reduced graphene oxide/nickel-cobalt double layered hydroxide composite on the nickel foam (Ni-Co LDH/rGO/NF) via a fast and simple two-step electrochemical method including potentiostatic routes in the presence of CTAB as a cationic surfactant. Graphene oxide coated nickel foam prepared by simple immersion method. After that, the prepared electrode reduced electrochemically to obtain rGO/NF electrode. Finally, the rGO/NF electrode was used as cathode for electrodeposition of Ni-Co LDH in the presence of CTAB as cationic surfactant. The prepared electrodes were characterized by field emission scanning electron... 

    Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications

    , Article Journal of Solid State Electrochemistry ; Volume 22, Issue 4 , 2018 , Pages 983-996 ; 14328488 (ISSN) Asen, P ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless steel (SS) as the substrate. The Fe3+-Zn2+-PANI/GO nanocomposite is characterized using X-ray diffraction as well as Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. Also, cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are used to study the electrochemical performance of the as-prepared electrode materials. Significantly, the Fe3+-Zn2+-PANI/GO nanocomposite exhibits a specific...