Loading...
Search for: sub-threshold-sram
0.003 seconds

    A 32kb 90nm 10T-cell sub-threshold SRAM with improved read and write SNM

    , Article 2013 21st Iranian Conference on Electrical Engineering ; May , 2013 ; 9781467356343 (ISBN) Hassanzadeh, S ; Zamani, M ; Hajsadeghi, K ; Sharif University of Technology
    Abstract
    The constraints of power saving have compelled SRAM designers to consider sub-threshold area as a viable choice. The biggest barrier of this progress is the stability of SRAM's cells and the correct operations. In this paper a 10T cell structure has been proposed with 90% read and 50% write SNM improvement in comparison to the conventional 6T cell. The hold SNM value is about the 6T cell SRAM. Also using differential read method in the proposed structure causes high read performance and using simpler sense amplifier. The symmetric configuration of this structure helps the SRAM has simpler layout and lower transistor mismatch. Using 90nm TSMC CMOS, 32kb 10T cell SRAM in sub-threshold area is... 

    A novel low power 8T-cell sub-threshold SRAM with improved read-SNM

    , Article Proceedings of the 2013 8th International Conference on Design and Technology of Integrated Systems in Nanoscale Era, DTIS 2013 ; 2013 , Pages 35-38 ; 9781467360388 (ISBN) Hassanzadeh, S ; Zamani, M ; Hajsadeghi, K ; Saeidi, R ; Sharif University of Technology
    2013
    Abstract
    The fast growth of battery-operated portable applications has compelled the static random access memory (SRAM) designers to consider sub-threshold operation as a viable choice to reduce the power consumption. To increase the hold, read and write static noise margin (SNM) in the sub-threshold regime many structures has been proposed adding extra transistors to the conventional 6T-cell. In this paper we propose a new 8T-cell SRAM that shows 90% improvement in read SNM while write and hold SNM reduction can be ignored (this negligible reduction is due to the two stack transistors in the proposed 8T-cell). Benefiting differential output voltage in the read operation, sense amplifier design is... 

    A 32kb 90nm 9T-cell sub-threshold SRAM with improved read and write SNM

    , Article Proceedings of the 2013 8th International Conference on Design and Technology of Integrated Systems in Nanoscale Era, DTIS 2013 ; 2013 , Pages 104-107 ; 9781467360388 (ISBN) Zamani, M ; Hassanzadeh, S ; Hajsadeghi, K ; Saeidi, R ; Sharif University of Technology
    Abstract
    The fast growth of battery operated devices has made low power SRAM designs a necessity in recent years. Moreover, embedded SRAM units have become an important block in modern SoCs. The SRAM performance is limited by the cell stability during different operation. By adding extra transistor to the conventional 6T-cell, hold, read and write static noise margin (SNM) can be improved in the sub-threshold SRAM. In this paper we proposed a new 9T-cell SRAM that shows 80% and 50% improvement in read and write SNM respectively in comparison to the conventional 6T-cell SRAM. Using stack transistors in the leakage current path, the new structure shows lower bitline leakage assisting the sense... 

    A subthreshold symmetric SRAM cell with high read stability

    , Article IEEE Transactions on Circuits and Systems II: Express Briefs ; Vol. 61, issue. 1 , Jan , 2014 , p. 26-30 ; 15497747 Saeidi, R ; Sharifkhani, M ; Hajsadeghi, K ; Sharif University of Technology
    Abstract
    This brief introduces a differential eight-transistor static random access memory (SRAM) cell for subthreshold SRAM applications. The symmetric topology offers a smaller area overhead compared with other symmetric cells for the same stability in the read operation. Two transistors isolate the cell storage nodes from the read operation path to maintain the data stability of the cell. This topology improves the data stability at the expense of read operation delay. Thorough postlayout Monte Carlo worst corner simulations in 45-nm CMOS technology are conducted. The proposed cell operates down to 0.35 V with a read noise margin of 74 mV and a write noise margin of 92 mV. Under this condition,...