Loading...
Search for: strengthening--metal
0.008 seconds

    As-cast mechanical properties of vanadium/niobium microalloyed steels

    , Article Materials Science and Engineering A ; Volume 486, Issue 1-2 , 2008 , Pages 1-7 ; 09215093 (ISSN) Najafi, H ; Rassizadehghani, J ; Asgari, S ; Sharif University of Technology
    2008
    Abstract
    Tensile and room temperature Charpy V-notch impact tests along with microstructural studies were used to evaluate the variations in the as-cast mechanical properties of low-carbon steels with and without vanadium and niobium. Tensile test results indicate that good combinations of strength and ductility can be achieved by microalloying additions. While the yield strength and UTS increase up to respectively 370-380 and 540-580 MPa in the microalloyed heats, their total elongation range from 20 to 25%. TEM studies revealed that random and interphase fine-scale microalloy precipitates play a major role in the strengthening of the microalloyed heats. On the other hand, microalloying additions... 

    Strengthening study on 6082 Al alloy after combination of aging treatment and ECAP process

    , Article Materials Science and Engineering A ; Volume 527, Issue 18-19 , July , 2010 , Pages 4758-4766 ; 09215093 (ISSN) Dadbakhsh, S ; Karimi Taheri, A ; Smith, C. W ; Sharif University of Technology
    2010
    Abstract
    Equal channel angular pressing (ECAP) was used before and after various aging treatments in order to strengthen a commercial 6082 Al alloy. Experiments were carried out to study the strengthening of the alloy due to pre and post-ECAP aging treatment. It was found that aging before and after ECAP processing is an effective method for strengthening of the alloy. An increase in both strength and ductility of the ECAPed specimen was achieved via appropriate post-aging treatment. This was in such a manner that for maximal strengthening, post-ECAP aging is best conducted at temperatures lower than those usually used for aging if prior work hardening is not undertaken. Pre-ECAP aging was also... 

    Incorporating aspect ratio in a new modeling approach for strengthening of MMCs and its extension from micro to nano scale

    , Article Advanced Composite Materials ; Volume 19, Issue 4 , Apr , 2010 , Pages 299-316 ; 09243046 (ISSN) Zehtab Yazdi, A ; Bagheri, R ; Zebarjad, S. M ; Razavi Hesabi, Z ; Sharif University of Technology
    2010
    Abstract
    The strengthening behavior of particle reinforced metal-matrix composites is primarily attributed to the dislocation strengthening effect and the load transfer effect. To account for these two effects in a unified way, a new multi-scale approach is developed in this paper incorporating the aspect ratio effect into the geometrically necessary dislocation strengthening relationships. By making use of this multi-scale approach, the deformation behavior of metal-matrix composites (MMCs) and metal-matrix nanocomposites (MMNCs) as a function of size, volume fraction, aspect ratio, etc. of the particles has been investigated. Comparison with the previously proposed models and the available... 

    Microstructural development and mechanical properties of nanostructured copper reinforced with SiC nanoparticles

    , Article Materials Science and Engineering A ; Volume 568 , 2013 , Pages 33-39 ; 09215093 (ISSN) Akbarpour, M. R ; Salahi, E ; Hesari, F. A ; Yoon, E. Y ; Kim, H. S ; Simchi, A ; Sharif University of Technology
    2013
    Abstract
    Nanostructured Cu and Cu-2. vol% SiC nanocomposite were produced by high energy mechanical milling and hot pressing technique. Microstructure development during fabrication process was investigated by X-ray diffraction, scanning electron microscope, scanning transmission electron microscope, and electron backscatter diffraction techniques. The results showed that the microstructure of copper and copper-based nanoco mposite composed of a mixture of equiaxed nanograins with bimodal and non-random misorientation distribution. The presence of SiC nanoparticles refined the grain structure of the copper matrix while the fraction of low angle grain boundaries was increased. Evaluation of mechanical... 

    Effect of nanoparticle content on the microstructural and mechanical properties of nano-SiC dispersed bulk ultrafine-grained Cu matrix composites

    , Article Materials and Design ; Volume 52 , 2013 , Pages 881-887 ; 02641275 (ISSN) Akbarpour, M. R ; Salahi, E ; Alikhani Hesari, F ; Kim, H. S ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2013
    Abstract
    In this study, the microstructural and mechanical features of monolithic pure Cu and Cu matrix nanocomposites reinforced with three different fractions (2, 4, and 6. vol%) of SiC nanoparticles (n-SiC) fabricated via a combination of high energy mechanical milling and hot pressing techniques were investigated. The fabricated composites exhibited homogeneous distribution of the n-SiC with few porosities. It was found that the grain refinement, the planar features within the grains, and the lattice strains increase with increase in the n-SiC content. The yield and compressive strengths of the nanocomposites were significantly improved with increases in the n-SiC content up to 4. vol%; then they... 

    Effect of high energy ball milling on compressibility of nanostructured composite powder

    , Article Powder Metallurgy ; Volume 54, Issue 1 , Nov , 2011 , Pages 24-29 ; 00325899 (ISSN) Abdoli, H ; Farnoush, H. R ; Asgharzadeh, H ; Sadrnezhaad, S. K ; Sharif University of Technology
    2011
    Abstract
    Compressibility of a nanostructured Al-5AlN composite powder synthesised via high energy ball milling for various times was studied by means of a modified Heckel equation. Since workhardening and morphological changes take place by milling evolution, the compressibility was consequently affected. Strengthening of composite compacts was influenced by milling and compaction processes, i.e. strength of compacts increased at longer milling times and higher compaction pressures. It was found that, at the initial stages of milling and higher compaction pressures, the strengthening was mostly affected from compaction process, whereas the milling strengthening fraction was near to unity at lower... 

    Study on static strain aging of 6082 aluminium alloy

    , Article Materials Science and Technology ; Volume 26, Issue 2 , Jul , 2010 , Pages 169-175 ; 02670836 (ISSN) Dadbakhsh, S ; Karimi Taheri, A ; Sharif University of Technology
    2010
    Abstract
    In this study both the quench aging and static strain aging kinetics of a 6082 Al alloy were investigated at a temperature range of 130-200°C using the Vickers hardness and tensile test. The activation energy and dislocation density were determined at different stages of the aging phenomenon. The former was used to analyse the kinetics of aging and the latter to interpret the competition of strengthening and recovery mechanisms during aging. It is shown that different activation energies are achieved depending on the aging time and temperature relating to formation of appropriate precipitates at different stages of aging. Moreover, it is revealed that prestrain reduces the activation energy.... 

    Strengthening of metallic beams with different types of pre-stressed un-bonded retrofit systems

    , Article Composite Structures ; Volume 159 , 2017 , Pages 81-95 ; 02638223 (ISSN) Kianmofrad, F ; Ghafoori, E ; Elyasi, M. M ; Motavalli, M ; Rahimian, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Unlike bonded retrofit systems, un-bonded systems do not need any surface preparation prior to bond application, which reduces the overall time and cost of a retrofit plan. Because the carbon fiber reinforced polymer (CFRP) plate in the un-bonded (tendon) systems is not bonded to a metallic substrate, different variants of the retrofit systems can be developed to ease application in the field. This paper presents four different variants of the prestressed un-bonded retrofit (PUR) systems: trapezoidal PUR (TPUR), triangular PUR (TriPUR), Flat PUR (FPUR), and Contact PUR (CPUR) systems. Analytical solutions based on the flexibility approach are developed to predict the behavior of the metallic... 

    Synergistic strengthening by severe plastic deformation and post-heat treatment of a low-carbon steel

    , Article Steel Research International ; Volume 89, Issue 6 , 2018 ; 16113683 (ISSN) Soleimani, F ; Kazeminezhad, M ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    Low-carbon steel sheets are severely plastic deformed to strains of up to ≈3.48 and subsequently heat treated by conventional annealing followed by water-quenching. Four temperatures are chosen for the annealing below and over the Ac1 and Ac3 transformation lines. The effects of post-deformation heat treatment are investigated by evaluating the microstructure and mechanical properties, including strength, ductility, work hardening capability, and hardness. A maximum increase of 86% in the strength is obtained through intercritical annealing and quenching of the samples subjected to strain of 1.16. It is interesting that both the elongation and ultimate tensile strength values are higher... 

    Microstructure evolution and its influence on deformation mechanisms during high temperature creep of a nickel base superalloy

    , Article Materials Science and Engineering A ; Volume 499, Issue 1-2 , 2009 , Pages 445-453 ; 09215093 (ISSN) Safari, J ; Nategh, S ; Sharif University of Technology
    2009
    Abstract
    The interaction of dislocation with strengthening particles, including primary and secondary γ′, during different stages of creep of Rene-80 was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). During creep of the alloy at 871 °C under stress of 290 MPa, the dislocation network was formed during the early stages of creep, and the dislocation glide and climb process were the predominant mechanism of deformation. The density of dislocation network became more populated during the later stages of the creep, and at the latest stage of the creep, primary particles shearing were observed alongside with the dislocation glide and climb. Shearing of γ′... 

    Effect of utilizing glass fiber-reinforced polymer on exural strengthening of rc arches

    , Article Scientia Iranica ; Volume 26, Issue 4A , 2019 , Pages 2299-2309 ; 10263098 (ISSN) Moradi, H ; Khaloo, A. R ; Shekarchi, M ; Kazemian, A ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    An experimental study of the. flexural behavior of Reinforced-Concrete (RC) arches strengthened with Glass Fiber-Reinforced Polymer (GFRP) layers was performed. A total of 36 specimens including 3 un-strengthenod (control) and 33 strengthened RC arches were tested under centrally concentrated point load. The variables of this study were steel reinforcement ratio, number of GFRP layers, and location and arrangement of GFRP layers. Failure mode, load-displacement response of specimens, crack propagation patterns, and GFRP debonding were examined. The extrados strengthening method was shown to Ix1 more effective than the intrados strengthening one in improving the failure load and rigidity of... 

    Enhanced tensile properties and electrical conductivity of Cu-CNT nanocomposites processed via the combination of flake powder metallurgy and high pressure torsion methods

    , Article Materials Science and Engineering A ; Volume 773 , 2020 Akbarpour, M. R ; Mousa Mirabad, H ; Alipour, S ; Kim, H. S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Using flake powder metallurgy (FPM) technique, combined with high pressure torsion, super high strength-ductile Cu-CNT nanocomposite with high electrical conductivity is developed. The nanocomposite with 4 vol% CNT showed high tensile strength of ~474 MPa, high electrical conductivity of ~82.5% IACS as well as appreciable ductility of ~11%. According to microstructural studies, the excellent properties of the nanocomposite are attributed to the formation of trimodal grains, high density of twin and low angle grain boundaries, improvement in CNT and Cu interfacial bonding, and appropriate distribution and maintaining the microstructure of the nanotubes in the production process. The results... 

    Experimental investigation on the behavior of RC arches strengthened by GFRP composites

    , Article Construction and Building Materials ; Volume 235 , 28 February , 2020 Khaloo, A ; Moradi, H ; Kazemian, A ; Shekarchi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    An experimental investigation on the behavior of RC arches strengthened by glass fiber-reinforced polymer (GFRP) composites is presented. Twelve samples were tested in order to determine influence of arrangement and number of GFRP layers on RC arches having different steel reinforcement ratios. The arches were tested under centrally concentrated point load using displacement control condition. Load-deflection behavior, failure mode, GFRP debonding, angle between hinge formation and supports and crack propagation pattern are studied extensively. Based on test results, extrados strengthening is much more effective than intrados strengthening in increasing ultimate load carrying capacity which... 

    Effect of utilizing glass fiber-reinforced polymer on exural strengthening of rc arches

    , Article Scientia Iranica ; Volume 26, Issue 4A , 2019 , Pages 2299-2309 ; 10263098 (ISSN) Moradi, H ; Khaloo, A. R ; Shekarchi, M ; Kazemian, A ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    An experimental study of the. flexural behavior of Reinforced-Concrete (RC) arches strengthened with Glass Fiber-Reinforced Polymer (GFRP) layers was performed. A total of 36 specimens including 3 un-strengthenod (control) and 33 strengthened RC arches were tested under centrally concentrated point load. The variables of this study were steel reinforcement ratio, number of GFRP layers, and location and arrangement of GFRP layers. Failure mode, load-displacement response of specimens, crack propagation patterns, and GFRP debonding were examined. The extrados strengthening method was shown to Ix1 more effective than the intrados strengthening one in improving the failure load and rigidity of... 

    Microstructural features, texture and strengthening mechanisms of nanostructured AA6063 alloy processed by powder metallurgy

    , Article Materials Science and Engineering A ; Volume 528, Issue 12 , 2011 , Pages 3981-3989 ; 09215093 (ISSN) Asgharzadeh, H ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    Abstract
    Nanostructured AA6063 (NS-Al) powder with an average grain size of ~100. nm was synthesized by high-energy attrition milling of gas-atomized AA6063 powder followed by hot extrusion. The microstructural features of the consolidated specimen were studied by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD) techniques and compared with those of coarse-grained AA6063 (CG-Al) produced by hot powder extrusion of gas-atomized powder (without using mechanical milling). The consolidated NS-Al alloy consisted of elongated ultrafine grains (aspect ratio of ~2.9) and equiaxed nanostructured grains. A high fraction (~78%) of high-angle grain boundaries with average...