Loading...
Search for: stimulus
0.005 seconds
Total 33 records

    Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications

    , Article Nanotechnology Reviews ; Volume 7, Issue 1 , 2018 , Pages 95-122 ; 21919089 (ISSN) Sahandi Zangabad, P ; Mirkiani, S ; Shahsavari, S ; Masoudi, B ; Masroor, M ; Hamed, H ; Jafari, Z ; Davatgaran Taghipour, Y ; Hashemi, H ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Walter de Gruyter GmbH  2018
    Abstract
    Liposomes are known to be promising nanoparticles (NPs) for drug delivery applications. Among the different types of self-assembled NPs, liposomes stand out for their non-toxic nature and their possession of dual hydrophilic-hydrophobic domains. The advantages of liposomes include the ability to solubilize hydrophobic drugs, the ability to incorporate different hydrophilic and lipophilic drugs at the same time, lessening the exposure of host organs to potentially toxic drugs and allowing modification of the surface by a variety of different chemical groups. This modification of the surface, or of the individual constituents, may be used to achieve two important goals. First, ligands for... 

    Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications

    , Article Nanotechnology Reviews ; 2017 ; 21919089 (ISSN) Sahandi Zangabad, P ; Mirkiani, S ; Shahsavari, S ; Masoudi, B ; Masroor, M ; Hamed, H ; Jafari, Z ; Davatgaran Taghipour, Y ; Hashemi, H ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Abstract
    Liposomes are known to be promising nanoparticles (NPs) for drug delivery applications. Among different types of self-assembled NPs, liposomes stand out for their non-toxic nature, and their possession of dual hydrophilic-hydrophobic domains. Advantages of liposomes include the ability to solubilize hydrophobic drugs, the ability to incorporate different hydrophilic and lipophilic drugs at the same time, lessening the exposure of host organs to potentially toxic drugs and allowing modification of the surface by a variety of different chemical groups. This modification of the surface, or of the individual constituents, may be used to achieve two important goals. Firstly, ligands for active... 

    Capacitive Copling for Energy Transmission to Implant

    , M.Sc. Thesis Sharif University of Technology Ashiri, Mehrangiz (Author) ; Zahedi, Edmond (Supervisor) ; Vosughi Vahdat, Bijan (Supervisor)
    Abstract
    Neural prostheses (NPs) based on capacitive coupling method including sur-face NPs, implanted or subcutaneous NPs and Stimulus Route System (SRS) are the common NPs used for rehabilitation applications. SRS is a kind of capacitive coupling and the latest version of the mentioned neural prosthesis used for restoring sensory and motor functions caused by spinal cord and brain disorders. In addition to some superiorities of capacitive coupling compared to other methods (inductive coupling, batteries, energy harvesters and so on) such as at plates structure and consequently ease of manufacturing, ability to transfer data and power with different operating frequency and hence remov-ing... 

    Synthesis and Investigation of Electrochromic Component Stimuli- Esponsive Based on Aniline Pentamer

    , M.Sc. Thesis Sharif University of Technology Rezaei Zangeneh, Moein (Author) ; Pourjavdi, Ali (Supervisor)
    Abstract
    The use of polyaniline as an electrochromic conductive polymer was highly regarded. However, due to problems such as poor solubility, the researchers decided to use aniline oligomer as an alternative. Meanwhile, aniline pentamer received more attention due to its good solubility in organic solvents and acceptable conductivity. On the other hand, it is possible to increase the conductivity and also to respond more to stimuli to groups that have certain characteristics. In this study, aniline pentamer and carbazole-derived were used. First, nitro and bromoethanol groups are added to carbazole. Due to its fluorescence properties, carbazole can, in addition to increasing the conductivity, which... 

    Visual acuity classification using single trial visual evoked potentials

    , Article Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, 2 September 2009 through 6 September 2009 ; 2009 , Pages 982-985 ; 9781424432967 (ISBN) Hajipour, S ; Shamsollahi, M. B ; Abootalebi, V ; Sharif University of Technology
    Abstract
    Several researches have been done to identify visual system characteristics. Some of them are based on the processing of the brain signal recordings. Visual evoked potentials (VEPs) are electrical signals which are produced in response to the visual stimuli and recorded by means of electrodes placed on the head. These signals are usually characterized by the amplitude and latency of their peaks. Different types of visual stimuli and visual system characteristics can affect the shape and hence the characteristics of VEPs. In this paper, proper visual stimuli were used and VEPs were recorded in order to classify visual acuity. To achieve this goal, visual evoked potentials were recorded and... 

    Trial-by-trial surprise-decoding model for visual and auditory binary oddball tasks

    , Article NeuroImage ; Volume 196 , 2019 , Pages 302-317 ; 10538119 (ISSN) Modirshanechi, A ; Kiani, M. M ; Aghajan, H ; Sharif University of Technology
    Academic Press Inc  2019
    Abstract
    Having to survive in a continuously changing environment has driven the human brain to actively predict the future state of its surroundings. Oddball tasks are specific types of experiments in which this nature of the human brain is studied. Detailed mathematical models have been constructed to explain the brain's perception in these tasks. These models consider a subject as an ideal observer who abstracts a hypothesis from the previous stimuli, and estimates its hyper-parameters - in order to make the next prediction. The corresponding prediction error is assumed to manifest the subjective surprise of the brain. While the approach of earlier works to this problem has been to suggest an... 

    Synchronization of two coupled pacemaker cells based on the phase response curve

    , Article Biomedical Signal Processing and Control ; Volume 4, Issue 1 , 2009 , Pages 57-66 ; 17468094 (ISSN) Gholizade Narm, H ; Azemi, A ; Khademi, M ; Karimi Ghartemani, M ; Sharif University of Technology
    Abstract
    In this paper, the synchronization of a pair of pacemaker cells as Sino-Atrial (SA) and Atrio-Ventricullar (AV) nodes have been studied and a new approach for synchronization, based on the concept of Phase Response Curve (PRC), has been proposed. The paper starts with presenting the necessary and sufficient conditions for synchronization in terms of the PRC parameters. Such conditions are time dependent and thus, the paper proceeds with deriving some sufficient conditions, which are not time dependent. The time-delay between the firing time of SA node and when it reaches the AV node is also considered. When the conditions for spontaneous synchronization are not valid, the synchronization is... 

    Stimulus-responsive polymeric nanogels as smart drug delivery systems

    , Article Acta Biomaterialia ; Volume 92 , 2019 , Pages 1-18 ; 17427061 (ISSN) Hajebi, S ; Rabiee, N ; Bagherzadeh, M ; Ahmadi, S ; Rabiee, M ; Roghani Mamaqani, H ; Tahriri, M ; Tayebi, L ; Hamblin, M. R ; Sharif University of Technology
    Acta Materialia Inc  2019
    Abstract
    Nanogels are three-dimensional nanoscale networks formed by physically or chemically cross-linking polymers. Nanogels have been explored as drug delivery systems due to their advantageous properties, such as biocompatibility, high stability, tunable particle size, drug loading capacity, and possible modification of the surface for active targeting by attaching ligands that recognize cognate receptors on the target cells or tissues. Nanogels can be designed to be stimulus responsive, and react to internal or external stimuli such as pH, temperature, light and redox, thus resulting in the controlled release of loaded drugs. This “smart” targeting ability prevents drug accumulation in... 

    Stimulus-specific adaptation decreases the coupling of spikes to LFP phase

    , Article Frontiers in Neural Circuits ; Volume 13 , 2019 ; 16625110 (ISSN) Parto Dezfouli, M ; Zarei, M ; Jahed, M ; Daliri, M. R ; Sharif University of Technology
    Frontiers Media S.A  2019
    Abstract
    Stimulus repetition suppresses the neural activity in different sensory areas of the brain. This mechanism of so-called stimulus-specific adaptation (SSA) has been observed in both spiking activity and local field potential (LFP) responses. However, much remains to be known about the effect of SSA on the spike–LFP relation. In this study, we approached this issue by investigating the spike-phase coupling (SPC) in control and adapting paradigms. For the control paradigm, pure tones were presented in a random unbiased sequence. In the adapting paradigm, the same stimuli were presented in a random pattern but it was biased to an adapter stimulus. In fact, the adapter occupied 80% of the... 

    Optimal temporal resolution for decoding of visual stimuli in inferior temporal cortex

    , Article 2014 21st Iranian Conference on Biomedical Engineering, ICBME 2014 ; 2014 , pp. 109-112 Babolhavaeji, A ; Karimi, S ; Ghaffari, A ; Hamidinekoo, A ; Vosoughi-Vahdat, B ; Sharif University of Technology
    Abstract
    Inferior temporal (IT) cortex is the most important part of the brain and plays an important role in response to visual stimuli. In this study, object decoding has been performed using neuron spikes in IT cortex region. Single Unit Activity (SUA) was recorded from 123 neurons in IT cortex. Pseudo-population firing rate vectors were created, then dimension reduction was done and an Artificial Neural Network (ANN) was used for object decoding. Object decoding accuracy was calculated for various window lengths from 50 ms to 200 ms and various window steps from 25 ms to 100 ms. The results show that 150 ms length and 50 ms window step size gives an optimum performance in average accuracy  

    Optimal temporal resolution for decoding of visual stimuli in inferior temporal cortex

    , Article 2014 21st Iranian Conference on Biomedical Engineering, ICBME 2014, 26 November 2014 through 28 November 2014 ; November , 2014 , Pages 109-112 ; 9781479974177 (ISBN) Babolhavaeji, A ; Karimi, S ; Ghaffari, A ; Hamidinekoo, A ; Vosoughi Vahdat, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2014
    Abstract
    Inferior temporal (IT) cortex is the most important part of the brain and plays an important role in response to visual stimuli. In this study, object decoding has been performed using neuron spikes in IT cortex region. Single Unit Activity (SUA) was recorded from 123 neurons in IT cortex. Pseudo-population firing rate vectors were created, then dimension reduction was done and an Artificial Neural Network (ANN) was used for object decoding. Object decoding accuracy was calculated for various window lengths from 50 ms to 200 ms and various window steps from 25 ms to 100 ms. The results show that 150 ms length and 50 ms window step size gives an optimum performance in average accuracy  

    An entropy based method for activation detection of functional MRI data using independent component analysis

    , Article ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 14 March 2010 through 19 March 2010 ; March , 2010 , Pages 2014-2017 ; 15206149 (ISSN) ; 9781424442966 (ISBN) Akhbari, M ; Babaie Zadeh, M ; Fatemizadeh, E ; Jutten, C ; Sharif University of Technology
    2010
    Abstract
    Independent Component Analysis (ICA) can be used to decompose functional Magnetic Resonance Imaging (fMRI) data into a set of statistically independent images which are likely to be the sources of fMRI data. After applying ICA, a set of independent components are produced, and then, a "meaningful" subset from these components must be identified, because a large majority of components are non-interesting. So, interpreting the components is an important and also difficult task. In this paper, we propose a criterion based on the entropy of time courses to automatically select the components of interest. This method does not require to know the stimulus pattern of the experiment  

    The importance of fluid-structure interaction simulation for determining the mechanical stimuli of endothelial cells and atheroprone regions in a coronary bifurcation

    , Article Scientia Iranica ; Volume 23, Issue 1 , 2016 , Pages 228-237 ; 10263098 (ISSN) Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    The function and morphology of Endothelial Cells (ECs) play a key role in atherosclerosis. The mechanical stimuli of ECs, such as Wall Shear Stress (WSS) and arterial wall strain, greatly inuence the function and morphology of these cells. The present article deals with computations of these stimuli for a 3D model of a healthy coronary artery bifurcation. The focus of the study is to propose an accurate method for computations of WSS and strains. Two approaches are considered: Coupled simultaneous simulation of arterial wall and blood flow, called fluid-Structure Interaction (FSI) simulation, and decoupled, which simulates each domain (fluid and solid domain) separately. The study... 

    A portable culture chamber for studying the effects of hydrostatic pressure on cellular monolayers

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; 2018 ; 09544062 (ISSN) Kiyoumarsioskouei, A ; Saidi, M ; Mosadegh, B ; Firoozabadi, B ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    Hydrostatic pressure is one of the most fundamental and common mechanical stimuli in the body, playing a critical role in the homeostasis of all organ systems. Kidney function is affected by high blood pressure, namely hypertension, by the increased pressure acting on the glomerular capillary walls. This general effect of hypertension is diagnosed as a chronic disease, but underlying mechanistic causes are still not well understood. This paper reports a portable and adaptive device for studying the effects of hydrostatic pressure on a monolayer of cells. The fabricated device fits within a conventional incubation system and microscope. The effects of various pressures and durations were... 

    The effect of constant and variable stimulus duration on p300 detection

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 1807-1811 ; 9781728115085 (ISBN) Jalilpour, S ; Hajipour Sardouie, S ; Mijani, A. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, a new stimulation protocol is proposed to detect the P300 component. In this protocol visual oddball paradigm is used to evoke Event Related Potentials (ERPs). Two types of stimulation protocol for P300 detection (the proposed and standard protocols) are compared in terms of the R-square coefficient and the amplitude of the P300 component. Statistical analysis (paired t-test) is applied to determine the significant differences between the two protocols. The proposed method can enhance the ability to detect the P300 component in comparison to the common protocol that has been provided so far (standard protocol)  

    A portable culture chamber for studying the effects of hydrostatic pressure on cellular monolayers

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 233, Issue 3 , 2019 , Pages 807-816 ; 09544062 (ISSN) Kiyoumarsioskouei, A ; Saidi, M. S ; Mosadegh, B ; Firoozabadi, B ; Sharif University of Technology
    SAGE Publications Ltd  2019
    Abstract
    Hydrostatic pressure is one of the most fundamental and common mechanical stimuli in the body, playing a critical role in the homeostasis of all organ systems. Kidney function is affected by high blood pressure, namely hypertension, by the increased pressure acting on the glomerular capillary walls. This general effect of hypertension is diagnosed as a chronic disease, but underlying mechanistic causes are still not well understood. This paper reports a portable and adaptive device for studying the effects of hydrostatic pressure on a monolayer of cells. The fabricated device fits within a conventional incubation system and microscope. The effects of various pressures and durations were... 

    Computational study of geometric effects of bottom wall microgrooves on cell docking inside microfluidic devices

    , Article Journal of Mechanics in Medicine and Biology ; Volume 21, Issue 2 , 2021 ; 02195194 (ISSN) Ahandoust, S ; Saadatmand, M ; Sharif University of Technology
    World Scientific  2021
    Abstract
    Cells docking inside microfluidic devices is effective in studying cell biology, cell-based biosensing, as well as drug screening. Furthermore, single cell and regularly cells docking inside the microstructure of microfluidic systems are advantageous in different analyses of single cells exposed to equal drug concentration and mechanical stimulus. In this study, we investigated bottom wall microgrooves with semicircular and rectangular geometries with different sizes which are suitable for single cell docking along the length of the microgroove in x-direction and numerous cells docking regularly in one line inside the microgroove in a 3D microchannel. We used computational fluid dynamics to... 

    Computational study of geometric effects of bottom wall microgrooves on cell docking inside microfluidic devices

    , Article Journal of Mechanics in Medicine and Biology ; Volume 21, Issue 2 , 2021 ; 02195194 (ISSN) Ahandoust, S ; Saadatmand, M ; Sharif University of Technology
    World Scientific  2021
    Abstract
    Cells docking inside microfluidic devices is effective in studying cell biology, cell-based biosensing, as well as drug screening. Furthermore, single cell and regularly cells docking inside the microstructure of microfluidic systems are advantageous in different analyses of single cells exposed to equal drug concentration and mechanical stimulus. In this study, we investigated bottom wall microgrooves with semicircular and rectangular geometries with different sizes which are suitable for single cell docking along the length of the microgroove in x-direction and numerous cells docking regularly in one line inside the microgroove in a 3D microchannel. We used computational fluid dynamics to... 

    Effect of mechanical nonlinearity on the electromagnetic response of a microwave tunable metamaterial

    , Article Journal of Physics D: Applied Physics ; Volume 55, Issue 20 , 2022 ; 00223727 (ISSN) Karimi Mahabadi, R ; Goudarzi, T ; Fleury, R ; Orazbayev, B ; Naghdabadi, R ; Sharif University of Technology
    IOP Publishing Ltd  2022
    Abstract
    Tunable metamaterials functionalities change in response to external stimuli. Mechanical deformation is known to be an efficient approach to tune the electromagnetic response of a deformable metamaterial. However, in the case of large mechanical deformations, which are usually required to fully exploit the potential of the tunable metamaterials, the linear elastic mechanical analysis is no longer suitable. Nevertheless, nonlinear mechanical analysis is missing in the studies of mechanically tunable metamaterials. In this paper, we study the importance of considering nonlinearity in mechanical behavior when analyzing the response of a deformable metamaterial and its effects on electromagnetic... 

    Stimuli-responsive chitosan as an advantageous platform for efficient delivery of bioactive agents

    , Article Journal of Controlled Release ; Volume 317 , 2020 , Pages 216-231 Sabourian, P ; Tavakolian, M ; Yazdani, H ; Frounchi, M ; van de Ven, T. G. M ; Maysinger, D ; Kakkar, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Despite a diverse range of active pharmaceutical agents currently at our disposal, high morbidity rate diseases continue to pose a major health crisis globally. One of the important parameters in this regard is the controlled cargo delivery at desired sites. Among a variety of synthetic and natural macromolecular systems, chitosan, an abundant biopolymer, offers a platform for tailored architectures that could have high loading capacity of cargo, target and deliver. Stimuli directed accumulation of vehicles and drug release is an area of direct relevance to biomedical applications. In this review, we highlight essential characteristics of modified chitosan that present themselves for...