Loading...
Search for: stem-cell-differentiation
0.006 seconds

    Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system

    , Article Journal of Materials Chemistry B ; Volume 4, Issue 19 , 2016 , Pages 3169-3190 ; 20507518 (ISSN) Akhavan, O ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    Although graphene/stem cell-based tissue engineering has recently emerged and has promisingly and progressively been utilized for developing one of the most effective regenerative nanomedicines, it suffers from low differentiation efficiency, low hybridization after transplantation and lack of appropriate scaffolds required in implantations without any degrading in functionality of the cells. In fact, recent studies have demonstrated that the unique properties of graphene can successfully resolve all of these challenges. Among various stem cells, neural stem cells (NSCs) and their neural differentiation on graphene have attracted a lot of interest, because graphene-based neuronal tissue... 

    Development of a virtual cell model to predict cell response to substrate topography

    , Article ACS Nano ; Volume 11, Issue 9 , 2017 , Pages 9084-9092 ; 19360851 (ISSN) Heydari, T ; Heidari, M ; Mashinchian, O ; Wojcik, M ; Xu, K ; Dalby, M. J ; Mahmoudi, M ; Ejtehadi, M. R ; Sharif University of Technology
    Abstract
    Cells can sense and respond to changes in the topographical, chemical, and mechanical information in their environment. Engineered substrates are increasingly being developed that exploit these physical attributes to direct cell responses (most notably mesenchymal stem cells) and therefore control cell behavior toward desired applications. However, there are very few methods available for robust and accurate modeling that can predict cell behavior prior to experimental evaluations, and this typically means that many cell test iterations are needed to identify best material features. Here, we developed a unifying computational framework to create a multicomponent cell model, called the... 

    Cell-imprinted substrates act as an artificial niche for skin regeneration

    , Article ACS Applied Materials and Interfaces ; Vol. 6, Issue. 15 , 2014 , Pages 13280-13292 ; ISSN: 19448244 Mashinchian, O ; Bonakdar, S ; Taghinejad, H ; Satarifard, V ; Heidari, M ; Majidi, M ; Sharifi, S ; Peirovi, A ; Saffar, S ; Taghinejad, M ; Abdolahad, M ; Mohajerzadeh, S ; Shokrgozar, M. A ; Rezayat, S. M ; Ejtehadi M. R ; Dalby, M. J ; Mahmoudi, M ; Sharif University of Technology
    Abstract
    Bioinspired materials can mimic the stem cell environment and modulate stem cell differentiation and proliferation. In this study, biomimetic micro/nanoenvironments were fabricated by cell-imprinted substrates based on mature human keratinocyte morphological templates. The data obtained from atomic force microscopy and field emission scanning electron microscopy revealed that the keratinocyte-cell-imprinted poly(dimethylsiloxane) casting procedure could imitate the surface morphology of the plasma membrane, ranging from the nanoscale to the macroscale, which may provide the required topographical cell fingerprints to induce differentiation. Gene expression levels of the genes analyzed... 

    Flash photo stimulation of human neural stem cells on graphene/TiO 2 heterojunction for differentiation into neurons

    , Article Nanoscale ; Volume 5, Issue 21 , 2013 , Pages 10316-10326 ; 20403364 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2013
    Abstract
    For the application of human neural stem cells (hNSCs) in neural regeneration and brain repair, it is necessary to stimulate hNSC differentiation towards neurons rather than glia. Due to the unique properties of graphene in stem cell differentiation, here we introduce reduced graphene oxide (rGO)/TiO2 heterojunction film as a biocompatible flash photo stimulator for effective differentiation of hNSCs into neurons. Using the stimulation, the number of cell nuclei on rGO/TiO2 increased by a factor of ∼1.5, while on GO/TiO2 and TiO2 it increased only ∼48 and 24%, respectively. Moreover, under optimum conditions of flash photo stimulation (10 mW cm-2 flash intensity and 15.0 mM ascorbic acid in...