Loading...
Search for: steel-reinforcements
0.006 seconds

    The Effect of Olive Leaf Green Inhibitor on the Corrosion Resistance of Steel Reinforcement in Geopolymer Concrete Pore Solution

    , M.Sc. Thesis Sharif University of Technology Khalili, Mohammad Reza (Author) ; Afshar, Abdollah (Supervisor) ; Hosseini, Payam (Co-Supervisor)
    Abstract
    In this research project, the aim was to investigate the potential of olive leaf extract as an eco-friendly inhibitor for enhancing the corrosion resistance of reinforcing steel in simulated geopolymer concrete pore solution (GCP) containing chloride ions. The inhibitory effects of olive leaf extract were evaluated using various electrochemical techniques as well as scanning electron microscopy. The main phenolic compounds present in olive leaf extract were identified using high performance liquid chromatography (HPLC). Moreover, the elements and chemical bonds present in the surface passive film of the steel bar immersed in the olive leaf inhibiting system were characterized using... 

    Prediction of the penetrated rust into the microcracks of concrete caused by reinforcement corrosion

    , Article Applied Mathematical Modelling ; Volume 35, Issue 5 , 2011 , Pages 2529-2543 ; 0307904X (ISSN) Kiani, K ; Shodja, H. M ; Sharif University of Technology
    2011
    Abstract
    Consider a steel-rust-concrete composite consisting of a circular cylindrical concrete cover and a coaxial uniformly corroding steel reinforcement. Prediction of the amount of rust penetrated into the microcracks of concrete cover from a set of data measured at the surface of the concrete is of particular interest. The steel is assumed to be linear isotropic and rust follows a power law stress-strain relation. For the concrete, anisotropic behavior and post-cracking softening model is employed. The formulations lead to a nonlinear boundary value problem which is solved analytically. A key parameter β, defined as the ratio of the volume of corrosion products inside the cracks to the volume of... 

    Fracture properties of steel fiber reinforced high strength concrete using work of fracture and size effect methods

    , Article Construction and Building Materials ; Volume 142 , 2017 , Pages 482-489 ; 09500618 (ISSN) Kazemi, M. T ; Golsorkhtabar, H ; Beygi, M. H. A ; Gholamitabar, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    This paper deals with investigation of fracture behavior of steel fiber reinforced high strength concrete (SFRHSC) and compare it to plain high strength concrete (HSC). Based on an experimental program, a series of three point bending tests were carried out on 54 notched beams, as recommended by RILEM. The fracture parameters were measured by two methods: work of fracture method (WFM) and size effect method (SEM). Then the fracture parameters obtained from these two methods were compared. The results showed that with increase of steel fibers, fracture energy of GF in WFM and Gf in SEM increase but this increase in work of fracture method is more significant. The effective size of the process... 

    Effect of utilizing glass fiber-reinforced polymer on exural strengthening of rc arches

    , Article Scientia Iranica ; Volume 26, Issue 4A , 2019 , Pages 2299-2309 ; 10263098 (ISSN) Moradi, H ; Khaloo, A. R ; Shekarchi, M ; Kazemian, A ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    An experimental study of the. flexural behavior of Reinforced-Concrete (RC) arches strengthened with Glass Fiber-Reinforced Polymer (GFRP) layers was performed. A total of 36 specimens including 3 un-strengthenod (control) and 33 strengthened RC arches were tested under centrally concentrated point load. The variables of this study were steel reinforcement ratio, number of GFRP layers, and location and arrangement of GFRP layers. Failure mode, load-displacement response of specimens, crack propagation patterns, and GFRP debonding were examined. The extrados strengthening method was shown to Ix1 more effective than the intrados strengthening one in improving the failure load and rigidity of... 

    Experimental investigation on the behavior of RC arches strengthened by GFRP composites

    , Article Construction and Building Materials ; Volume 235 , 28 February , 2020 Khaloo, A ; Moradi, H ; Kazemian, A ; Shekarchi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    An experimental investigation on the behavior of RC arches strengthened by glass fiber-reinforced polymer (GFRP) composites is presented. Twelve samples were tested in order to determine influence of arrangement and number of GFRP layers on RC arches having different steel reinforcement ratios. The arches were tested under centrally concentrated point load using displacement control condition. Load-deflection behavior, failure mode, GFRP debonding, angle between hinge formation and supports and crack propagation pattern are studied extensively. Based on test results, extrados strengthening is much more effective than intrados strengthening in increasing ultimate load carrying capacity which... 

    Probabilistic seismic performance assessment of optimally designed highway bridge isolated by ordinary unbonded elastomeric bearings

    , Article Engineering Structures ; Volume 247 , 2021 ; 01410296 (ISSN) Maghsoudi Barmi, A ; Khansefid, A ; Khaloo, A ; Ehteshami Moeini, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Following the idea of using unbonded isolators to eliminate the tensile stress and providing a cost-effective isolation system, recent experimental research has shown ordinary unbonded steel reinforced elastomeric bearings (SREBs) as an attractive option for seismic isolation of highway bridges. The focus of current research work is on the evaluation of the seismic vulnerability of a highway bridge isolated by unbonded SREBs through developing fragility curves of the structure. This assessment considers parameters playing a key role in the isolation system behavior, namely the friction coefficient, as well as the isolator aging effects. In this regard, a typical three-span highway bridge is... 

    Dynamic performance of concrete slabs reinforced with steel and GFRP bars under impact loading

    , Article Engineering Structures ; Volume 191 , 2019 , Pages 62-81 ; 01410296 (ISSN) Sadraie, H ; Khaloo, A ; Soltani, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Reinforced concrete slabs are common structural elements that could be exposed to impact loading. Although use of reinforced concrete slabs and utilization of Fiber Reinforced Polymer (FRP) as alternative to traditional steel reinforcement slabs are growing, but the influence of various parameters on their response under impact loads is not properly evaluated. This study investigated the effect of rebar's material, amount and arrangement of reinforcements, concrete strength and slab thickness on dynamic behavior of reinforced concrete slabs using both laboratory experiments and numerical simulations. Performance of fifteen 1000 × 1000 mm concrete slabs, including two 75 mm thick plain slabs,... 

    Effect of utilizing glass fiber-reinforced polymer on exural strengthening of rc arches

    , Article Scientia Iranica ; Volume 26, Issue 4A , 2019 , Pages 2299-2309 ; 10263098 (ISSN) Moradi, H ; Khaloo, A. R ; Shekarchi, M ; Kazemian, A ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    An experimental study of the. flexural behavior of Reinforced-Concrete (RC) arches strengthened with Glass Fiber-Reinforced Polymer (GFRP) layers was performed. A total of 36 specimens including 3 un-strengthenod (control) and 33 strengthened RC arches were tested under centrally concentrated point load. The variables of this study were steel reinforcement ratio, number of GFRP layers, and location and arrangement of GFRP layers. Failure mode, load-displacement response of specimens, crack propagation patterns, and GFRP debonding were examined. The extrados strengthening method was shown to Ix1 more effective than the intrados strengthening one in improving the failure load and rigidity of... 

    Corrosion resistance evaluation of rebars with various primers and coatings in concrete modified with different additives

    , Article Construction and Building Materials ; Volume 262 , 2020 Afshar, A ; Jahandari, S ; Rasekh, H ; Shariati, M ; Afshar, A ; Shokrgozar, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Corrosion of steel rebars in concrete can reduce the durability of concrete structures in coastal environments. The corrosion rate of these concrete structures can be reduced by using suitable concrete additives and coating on rebars. This paper investigates the corrosion resistance of steel rebars by the addition of pozzolanic materials including fly ash, silica fume, polypropylene fibers, and industrial 2-dimethylaminoethanol (FerroGard 901) inhibitors to the concrete mixture. Three different types of rebars including mild steel rebar st37, and two stainless steel reinforcements, AISI 304 and AISI 316, were used. Various types of primer and coating including alkyd based primer, hot-dip...