Loading...
Search for: square-wave
0.004 seconds

    Nucleophilic addition of thiaproline to electrochemically derived o-quinone, application to the sensitive voltammetric detection of thiaproline

    , Article Electroanalysis ; Volume 18, Issue 22 , 2006 , Pages 2225-2231 ; 10400397 (ISSN) Shahrokhian, S ; Amiri, M ; Sharif University of Technology
    2006
    Abstract
    The mechanism of electrochemical behavior of catechol in the presence of thiaproline is investigated by cyclic voltammetry, controlled-potential coulometry and spectrophotometric tracing of the reaction coordinate. The results indicate that thiaproline participate in with an ECEC mechanism in a nucleophilic (Michael) addition to o-quinone. Effect of pH of buffer solution on reaction pathway is studied and showed that addition of thiaproline to the o-quinone is performed only in solutions with pHs higher than 5. These results indicate that the addition of thiaproline is occurred first from amine functional group. In the second step, the addition of carboxylate group of thiaproline to C-5 of... 

    Electrochemical oxidation of dopamine in the presence of sulfhydryl compounds: Application to the square-wave voltammetric detection of penicillamine and cysteine

    , Article Electrochimica Acta ; Volume 51, Issue 20 , 2006 , Pages 4271-4276 ; 00134686 (ISSN) Shahrokhian, S ; Bozorgzadeh, S ; Sharif University of Technology
    2006
    Abstract
    Electro-oxidation of dopamine at a glassy carbon electrode was investigated in the presence of some biologically important thiols (R-SH), e.g. cysteine and penicillamine. Results of cyclic voltammetric studies together with the spectrophotometric foundations via Ellman's test during the controlled-potential coulometry show a nucleophilic addition/reduction of thiol to the electrochemically generated dopaminoquinone by a 1 + 4 Michael addition. The resulting ring substituted substrate (as RS-form) is more easily oxidized leading to an increase in the anodic current of dopamine, which is proportional to the concentration of thiol. The square-wave voltammetry (SWV) were applied as a very... 

    Highly sensitive 3D gold nanotube ensembles: Application to electrochemical determination of metronidazole

    , Article Electrochimica Acta ; Volume 106 , 2013 , Pages 288-292 ; 00134686 (ISSN) Mollamahale, Y. B ; Ghorbani, M ; Ghalkhani, M ; Vossoughi, M ; Dolati, A ; Sharif University of Technology
    2013
    Abstract
    Three-dimensional gold nanoelectrode ensembles (3D GNE) have proven to be promising nanoelectrodes by representing much higher sensitivity compared to both their 2D nanostructures and bulk counterparts. The sensitivity of 3D gold nanotubes (GNTs) fabricated through electrodeposition inside the pores of polycarbonate templates, was examined toward metronidazole (MTZ) as one of their pharmaceutical applications. The electrochemical behavior of MTZ at the 3D GNT-modified electrode was discussed in detail through cyclic voltammetry (CV) which suggested an irreversible reduction of nitro group to the corresponding hydroxylamine and a subsequently reversible redox peak for the corresponding... 

    Online small signal stability analysis of multi-machine systems based on synchronized phasor measurements

    , Article Electric Power Systems Research ; Volume 81, Issue 10 , October , 2011 , Pages 1887-1896 ; 03787796 (ISSN) Mohammadi Ivatloo, B ; Shiroei, M ; Parniani, M ; Sharif University of Technology
    2011
    Abstract
    This paper presents a novel approach for small signal stability assessment of a multi-machine system using only synchronized Phasor Measurement Units (PMUs) data. The proposed method does not need any information about the generators, network configuration or line impedances. By installing one PMU on each generator bus and using classical model for generator, all of the network and generators parameters needed for small signal stability analysis are estimated using the ambient data registered in the PMUs. Least square error estimation is used to obtain a reduced admittance matrix for the network in real-time. The estimated model is then used to evaluate the multi machine system dynamics in... 

    Application of carbon nanoparticle/chitosan modified electrode for the square-wave adsorptive anodic striping voltammetric determination of Niclosamide

    , Article Electrochemistry Communications ; Volume 12, Issue 1 , 2010 , Pages 66-69 ; 13882481 (ISSN) Ghalkhani, M ; Shahrokhian, S ; Sharif University of Technology
    2010
    Abstract
    A new modified electrode formed by carbon nanoparticle/chitosan film (CNP/CS) was used for electrocatalytic reduction of Niclosamide (NA). The electrochemical behavior of NA at the CNP/CS modified electrode was investigated in detail by the means of cyclic voltammetry. The reduction mechanism of NA, corresponds to the redox chemistry of nitro group, was thoroughly investigated. The effect of the experimental parameters e.g. potential and time of accumulation, pH of the buffered solutions and potential sweep rate on the response of the electrode was studied. The prepared electrode showed high stability and uniformity in the composite film, short response time, good reproducibility and an... 

    Rapid and simultaneous determination of tetracycline and cefixime antibiotics by mean of gold nanoparticles-screen printed gold electrode and chemometrics tools

    , Article Measurement: Journal of the International Measurement Confederation ; Vol. 47, Issue. 1 , 2014 , pp. 145-149 ; ISSN: 02632241 Asadollahi-Baboli, M ; Mani-Varnosfaderani, A ; Sharif University of Technology
    Abstract
    The screen-printed gold electrode (SPGE) modified with the formation of self-assembly monolayer (SAM) of cysteine (Cys) on gold-nanoparticles (Au nano) was utilized for rapid and simultaneous determination of tetracycline and cefixime antibiotics by square wave voltammetry (SWV). Electrochemical investigation and characterization of the modified electrode was achieved using cyclic voltammetry (CV) and scanning electron microscopy (SEM). A principal component artificial neural network (PCANN) with three layer back-propagation network was utilized for the analysis of the voltammogram data. It is possible to simultaneously determine the tetracycline and cefixime concentrations in the ranges of... 

    Selective voltammetric determination of d-penicillamine in the presence of tryptophan at a modified carbon paste electrode incorporating TiO2 nanoparticles and quinizarine

    , Article Journal of Electroanalytical Chemistry ; Volume 644, Issue 1 , Jan , 2010 , Pages 1-6 ; 15726657 (ISSN) Mazloum Ardakani, M ; Beitollahi, H ; Taleat, Z ; Naeimi, H ; Taghavinia, N ; Sharif University of Technology
    2010
    Abstract
    A carbon paste electrode (CPE) chemically modified with TiO2 nanoparticles and quinizarine (QZ) was used as a selective electrochemical sensor for the simultaneous determination of minor amounts of d-penicillamine (D-PA) and tryptophan (Trp). This modified electrode showed very efficient electrocatalytic activity for anodic oxidation of both d-PA and Trp. Substantial decreases of anodic overpotentials for both compounds made this analysis possible. Results of square wave voltammetry (SWV) using this modified electrode showed two well-resolved anodic waves for the oxidation of d-PA and Trp, which makes the simultaneous determination of both compounds possible. The peak potential for the... 

    Fabrication of modified TiO 2 nanoparticle carbon paste electrode for simultaneous determination of dopamine, uric acid, and l-cysteine

    , Article Journal of Solid State Electrochemistry ; Volume 13, Issue 9 , 2009 , Pages 1433-1440 ; 14328488 (ISSN) Mazloum Ardakani, M ; Talebi, A ; Naeimi, H ; Nejati Barzoky, M ; Taghavinia, N ; Sharif University of Technology
    2009
    Abstract
    A carbon paste electrode, modified with 2, 2″-[1,7- hepthandiylbis(nitriloethylidyne)]-bis-hydroquinone and TiO 2 nanoparticles, was used for the simultaneous determination of dopamine (DA), uric acid (UA), and l-cysteine. The study was carried out by using cyclic voltammetry, chronoamperometry, and square wave voltammetry (SWV) techniques. Some kinetic parameters such as the electron transfer coefficient (α) and heterogeneous rate constant (k s) were also determined for the DA oxidation. A dynamic range of 8.0-1400 μM, with the detection limit of 8.4∈×∈10 -7 M for DA, was obtained using SWV (pH∈=∈7.0). The prepared electrode was successfully applied for the determination of DA, UA, and... 

    Position control of shape memory alloy actuator based on the generalized Prandtl-Ishlinskii inverse model

    , Article Mechatronics ; Volume 22, Issue 7 , 2012 , Pages 945-957 ; 09574158 (ISSN) Sayyaadi, H ; Zakerzadeh, M. R ; Sharif University of Technology
    2012
    Abstract
    Hysteresis and significant nonlinearities in the behavior of Shape Memory Alloy (SMA) actuators encumber effective utilization of these actuator. Due to these effects, the position control of SMA actuators has been a great challenge in recent years. Literature review of the research conducted in this area shows that using the inverse of the phenomenological hysteresis models can compensate the hysteresis of these actuators effectively. But, inverting some of these models, such as Preisach model, is numerically a complex task. However, the generalized Prandtl-Ishlinskii model is analytically invertible, and therefore can be implemented conveniently as a feedforward controller for compensating... 

    A low power, low phase noise, square wave LC quadrature VCO and its comprehensive analysis for ISM band

    , Article AEU - International Journal of Electronics and Communications ; Volume 65, Issue 5 , 2011 , Pages 458-467 ; 14348411 (ISSN) Atarodi, M ; Torkzadeh, P ; Behmanesh, B ; Sharif University of Technology
    Abstract
    This paper presents a phase-noise reduction technique for voltage-controlled oscillators (VCOs) using a harmonic tuned (HT) LC tank. The phase-noise suppression is achieved through almost rectangular-shaped VCO oscillating signal which effectively maximizes oscillating signal slope at zero crossing points resulting in-phase-noise degradation. In addition, by shortening down converted noise power around oscillating signal second harmonic, more phase-noise suppression has been achieved. A comprehensive analysis for frequency and amplitude deviations as high as 20% for third harmonic and its effect on output phase-noise suppression has been discussed. In the followings, a comprehensive analysis... 

    Anodic behavior of clioquinol at a glassy carbon electrode

    , Article Bioelectrochemistry ; Volume 80, Issue 2 , 2011 , Pages 175-181 ; 15675394 (ISSN) Ghalkhani, M ; Fernandes, I. P. G ; Oliveira, S. C. B ; Shahrokhian, S ; Oliveira-Brett, A. M ; Sharif University of Technology
    2011
    Abstract
    Clioquinol is an antifungal, antiprotozoal and an Alzheimer's disease drug with cytotoxic activity toward human cancer cells. The electrochemical behavior of clioquinol and its oxidation product was studied using cyclic, differential pulse and square-wave voltammetry over a wide pH range on a glassy carbon electrode. The results revealed that the oxidation of clioquinol is an irreversible pH-dependent process that proceeds with the transfer of one electron and one proton in an adsorption-controlled mechanism and results in the formation of a main oxidation product, which adsorbs very strongly on the glassy carbon surface. The charge transfer coefficient was calculated as 0.64. The adsorbed... 

    Multilayered mesoporous composite nanostructures for highly sensitive label-free quantification of cardiac troponin-i

    , Article Biosensors ; Volume 12, Issue 5 , 2022 ; 20796374 (ISSN) Saeidi, M ; Amidian, M. A ; Sheybanikashani, S ; Mahdavi, H ; Alimohammadi, H ; Syedmoradi, L ; Mohandes, F ; Zarrabi, A ; Tamjid, E ; Omidfar, K ; Simchi, A ; Sharif University of Technology
    MDPI  2022
    Abstract
    Cardiac troponin-I (cTnI) is a well-known biomarker for the diagnosis and control of acute myocardial infarction in clinical practice. To improve the accuracy and reliability of cTnI electrochemical immunosensors, we propose a multilayer nanostructure consisting of Fe3O4-COOH labeled anti-cTnI monoclonal antibody (Fe3O4-COOH-Ab1 ) and anti-cTnI polyclonal antibody (Ab2 ) conjugated on Au-Ag nanoparticles (NPs) decorated on a metal–organic framework (Au-Ag@ZIF-67-Ab2 ). In this design, Fe3O4-COOH was used for separation of cTnI in specimens and signal amplification, hierarchical porous ZIF-67 extremely enhanced the specific surface area, and Au-Ag NPs synergically promoted the conductivity...