Loading...
Search for: spine
0.007 seconds
Total 151 records

    A biomechanical model to analyze normal, degenerated, and fused cervical spines using Iar's concept

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 28, Issue 4 B , 2004 , Pages 423-433 ; 03601307 (ISSN) Meghdari, A ; Bahrami, A. H ; Sharif University of Technology
    2004
    Abstract
    During voluntary flexion/extension of the head-neck system, the cervical spine undergoes a stepwise motion from upper to lower regions with a specific pattern. The motion of each vertebra is composed of a translation and rotation with respect to lower vertebrae, which may be considered as an absolute rotation about an axis called instantaneous axis of rotation (IAR). The location of this axis is different between normal and degenerated spines. A biomechanical computer model of the head and cervical vertebrae, including eight separate rigid links and nine spinal muscles as actuating elements was developed to evaluate and compare inter-segmental force-moments and muscle forces in normal,... 

    Effects of motion segment simulation and joint positioning on spinal loads in trunk musculoskeletal models

    , Article Journal of Biomechanics ; 2017 ; 00219290 (ISSN) Ghezelbash, F ; Eskandari, A. H ; Shirazi Adl, A ; Arjmand, N ; El-Ouaaid, Z ; Plamondon, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Musculoskeletal models represent spinal motion segments by spherical joints/beams with linear/nonlinear properties placed at various locations. We investigated the fidelity of these simplified models (i.e., spherical joints with/without rotational springs and beams considering nonlinear/linear properties) in predicting kinematics of the ligamentous spine in comparison with a detailed finite element (FE) model while considering various anterior-posterior joint placements. Using the simplified models with different joint offsets in a subject-specific musculoskeletal model, we computed local spinal forces during forward flexion and compared results with intradiscal pressure measurements. In... 

    Evaluation of trunk muscle forces and internal loads using kinematics-based modeling

    , Article Proceedings of the IASTED International Conference on Biomedical Engineering, Salzburg, 25 June 2003 through 27 June 2003 ; 2003 , Pages 114-119 ; 0889863539 (ISBN) Shirazi Adl, A ; El-Rich, M ; Parnianpour, M ; Sharif University of Technology
    2003
    Abstract
    Trunk muscle forces and internal loads are computed under simulated standing postures while carrying a load using a nonlinear finite element model of the T1-S1 spine with realistic nonlinear load-displacement properties. A novel kinematics-based algorithm is applied that exploits a set of a priori known spinal sagittal rotations to solve the redundant active-passive system. The loads consist of upper body gravity distributed along the spine plus 200 N held in hands either in front or on sides. Predictions are in good agreement with reported measurements of posture, muscle EMG and intradiscal pressure. Minimal changes in posture (posterior pelvic tilt and lumbar flattening) substantially... 

    Reliability of electromyographic and torque measures during isometric axial rotation exertions of the trunk

    , Article Clinical Neurophysiology ; Volume 114, Issue 12 , 2003 , Pages 2355-2361 ; 13882457 (ISSN) Ng, J. K.-F ; Parnianpour, M ; Kippers, V ; Richardson, C. A ; Sharif University of Technology
    Elsevier Ireland Ltd  2003
    Abstract
    Objective: The aim of the present study was to investigate the between-days reliability of electromyographic (EMG) measurement of 6 bilateral trunk muscles and also the torque output in 3 planes during isometric right and left axial rotation at different exertion levels. Methods: Ten healthy subjects performed isometric right and left axial rotation at 100, 70, 50 and 30% maximum voluntary contractions in two testing sessions at least 7 days apart. EMG amplitude and frequency analyses of the recorded surface EMG signals were performed for rectus abdominis, external oblique, internal oblique, latissimus dorsi, iliocostalis lumborum and multifidus bilaterally. The primary torque in the... 

    Muscle force evaluation and the role of posture in human lumbar spine under compression

    , Article European Spine Journal ; Volume 11, Issue 6 , 2002 , Pages 519-526 ; 09406719 (ISSN) Shirazi Adl, A ; Sadouk, S ; Parnianpour, M ; Pop, D ; El-Rich, M ; Sharif University of Technology
    2002
    Abstract
    Using two nonlinear finite element models of the lumbar spine, the concept of optimal posture is explored by minimizing the segmental sagittal moments required for the equilibrium of the passive lumbar spine under a total of 2800 N axial compression while varying the pelvic tilt and lumbar lordosis. The redundant active-passive system is subsequently solved for this posture using a novel kinematics-based muscle calculation algorithm along with minimization approach. Some flattening in the lumbar spine substantially reduces the required moments and internal passive shear forces under 2800 N axial compression force. Small muscle forces are calculated for this optimal posture. The role of... 

    Effect of considering stability requirements on antagonistic muscle activities using a musculoskeletal model of the human lumbar spine

    , Article 2013 20th Iranian Conference on Biomedical Engineering, ICBME 2013 ; 2013 , Pages 260-264 Hajihoseinali, M ; Nickpour, H ; Arjmand, N ; Farahmand, F ; Sharif University of Technology
    2013
    Abstract
    The recruitment pattern of trunk muscles is determined using a three-dimensional model of the spine with two joints and six symmetric pairs of muscles in which both equilibrium and stability requirements are satisfied. Model predictions are verified using Anybody Modeling System (AMS) and Abaqus. The model is used to test the hypothesis that antagonistic muscle activities are necessary for the spinal stability. The model with stability constraints predicts muscle activities greater than those predicted without stability consideration. In agreement with experimental data, the stability-based model predicts antagonistic muscle activities. It is shown that spinal stability increases with trunk... 

    Investigation of cervical spine curvature in females with postural neck pain

    , Article Journal of Zanjan University of Medical Sciences and Health Services ; Volume 25, Issue 110 , 2017 , Pages 110-119 ; 16069366 (ISSN) Salahzadeh, Z ; Maroufi, N ; Ahmadi, A ; Behtash, H ; Hazhir Sahneh, S ; Parnianpour, M ; Sharif University of Technology
    Zanjan University of Medical Sciences and Health Services  2017
    Abstract
    Background and Objective: Changes in the cervical spine curvature leads to increased shear force and compression stress on cervical spine and axial loading in different cervical segments. The objective of this study was to compare the general and segmental curvature in the upper and lower cervical spine of women with postural neck pain and Forward Head Posture (FHP), women without neck pain but with FHP and healthy women. Material and Methods: 45 women were divided into three groups: 15 women with postural neck pain and FHP, 15 women without neck pain but with FHP and 15 healthy women. Photography was used to assess neck posture while cervical spine curvature was measured using fluoroscopy... 

    Evaluation of Trunk Movement System Strategies through the Concept of Muscle Synergies

    , M.Sc. Thesis Sharif University of Technology Bagheri Rouchi, Mahdi (Author) ; Firoozbakhsh, Keikhosrow (Supervisor) ; Parnianpour, Mohammad (Co-Advisor)
    Abstract
    In this study, by dividing spine motion in two part, ordinary movement and initial-final accelerated movement, the commands of CNS are evaluated by optimization methods to find synchronous and time varying synergies. Spine, which is a complex structure of vertebrae and cartilage, has been modeled by a 3D inverted pendulum with a ball and socket joint at L4/L5 incorporated with 18 muscle fascicles. Planning of point-to-point spine motion is performed by optimal control method in combined with cost function of kinematics and kinetic features that available in spine structure. In the second step, coactivation of muscles is predicted by utilizing static optimization along with stability... 

    3D Measurements of the Thoracic and Lumbar Spine Range of Motions Using Inertial Sensors

    , M.Sc. Thesis Sharif University of Technology Narimany, Mohammad (Author) ; Arjmand, Navid (Supervisor)
    Abstract
    Musculoskeletal abnormalities affect joints and change their range of motion (RoM). Correcting these abnormalities thoroughly depends on the information related to the normal spine movement. Therefore, spine motion analysis can be used as an important tool to distinguish between healthy and patient individuals as well as to determine the intensity of such diseases. Additionally, existing biomechanical models need kinematics data in order to analyze spinal forces. The present study hence aims to measure 3D range of motion of thoracic and lumbar spine using inertial sensors. Their small size, portability, low weight, and relatively low cost make inertial sensors as indispensable tools in... 

    Developing a Biomechanical Model of Lumbar Spine in Order to Evaluating the Behavior of Spine under Physiological and in Vitro Loading Conditions

    , M.Sc. Thesis Sharif University of Technology Borghei Nejad, Mustafa (Author) ; Firozbakhsh, Keikhosrow (Supervisor) ; Parnianpour, Mohammad (Co-Advisor)
    Abstract
    In present study we are going to introduce a biomechanical model of lumbar spine with using finite element method and use it for evaluating the behavior of spine under different loading conditions.Spine as the main part of muskloskeletal system of human body is tolerating various forces during daily activities.So it's important to know about different approaches for studing the loading conditions wich is using for evaluating the behavior of lumbar implants. In other words in order to obtain correct outputs we need to simulate the real condition in the experiments. We can use biomechanical models in order to comparison the different approaches  

    A rigid thorax assumption affects model loading predictions at the upper but not lower lumbar levels

    , Article Journal of Biomechanics ; Volume 49, Issue 13 , 2016 , Pages 3074-3078 ; 00219290 (ISSN) Ignasiak, D ; Ferguson, S. J ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    A number of musculoskeletal models of the human spine have been used for predictions of lumbar and muscle forces. However, the predictive power of these models might be limited by a commonly made assumption; thoracic region is represented as a single lumped rigid body. This study hence aims to investigate the impact of such assumption on the predictions of spinal and muscle forces. A validated thoracolumbar spine model was used with a flexible thorax (T1–T12), a completely rigid one or rigid with thoracic posture updated at each analysis step. The simulations of isometric forward flexion up to 80°, with and without a 20 kg hand load, were performed, based on the previously measured... 

    Dynamic iso-resistive trunk extension simulation: Contributions of the intrinsic and reflexive mechanisms to spinal stability

    , Article Technology and Health Care ; Volume 15, Issue 6 , 2007 , Pages 415-431 ; 09287329 (ISSN) Davarani, S. Z ; Shirazi Adl, A ; Hemami, H ; Mousavi, S. J ; Parnianpour, M ; Sharif University of Technology
    IOS Press  2007
    Abstract
    The effects of external resistance on the recruitment of trunk muscles and the role of intrinsic and reflexive mechanisms to ensure the spinal stability are significant issues in spinal biomechanics. A computational model of spine under the control of 48 anatomically oriented muscle actions was used to simulate iso-resistive trunk movements. Neural excitation of muscles was attained based on inverse dynamics approach along with the stability-based optimization. The effect of muscle spindle reflex response on the trunk movement stability was evaluated upon the application of a perturbation moment. In this study, the trunk extension movement at various resistance levels while extending from... 

    Effect of Translational Degrees of Freedom of Intervertebral Joints on Prediction of Spinal Load and Muscle Forces in AnyBody Modeling System

    , M.Sc. Thesis Sharif University of Technology Nikpour, Hassan (Author) ; Arjmand, Navid (Supervisor) ; Parnianpour, Mohammad (Co-Advisor)
    Abstract
    Biomechanical models are indispensable tools in predictions of muscle forces and joint loads towards design of prevention and treatment programs. In most of these models intervertebral joints are modeled as hinge joints thus neglecting the existing translational degrees of freedom (DOFs). This simplification can alter the results of the model as changes in model kinematics affect the prediction of the joint and muscle forces. The current study aims to evaluate the likely effect of this simplification on the predictions of the musculoskeletal model of AnyBody Modeling System (AMS) for muscle forces and spinal loads. Clinical application of this study is in assessing the limitation of... 

    A novel aerodynamic design method for centrifugal compressor impeller

    , Article Journal of Applied Fluid Mechanics ; Vol. 7, issue. 2 , July , 2014 , p. 329-344 Nili-Ahmadabadi, M ; Durali, M ; Hajilouy, A ; Sharif University of Technology
    Abstract
    This paper describes a new quasi-3D design method for centrifugal compressor impeller. The method links up a novel inverse design algorithm, called Ball-Spine Algorithm (BSA), and a quasi-3D analysis. Euler equation is solved on the impeller meridional plane. The unknown boundaries (hub and shroud) of numerical domain are iteratively modified by BSA until a target pressure distribution in flow passage is reached. To validate the quasi-3D analysis code, existing compressor impeller is investigated experimentally. Comparison between the quasi-3D analysis and the experimental results shows good agreement. Also, a full 3D Navier-Stokes code is used to analyze the existing and designed compressor... 

    Can simple trunk muscle models balance and stabilize lumbar spine during support of symmetric and asymmetric loads? a FE model study

    , Article 2007 ASME Summer Bioengineering Conference, SBC 2007, Keystone, CO, 20 June 2007 through 24 June 2007 ; 2007 , Pages 443-444 ; 0791847985 (ISBN); 9780791847985 (ISBN) Kiapour, A ; Shirazi Adl, A ; Parnianpour, M ; Sharif University of Technology
    2007

    A comprehensive evaluation of spine kinematics, kinetics, and trunk muscle activities during fatigue-induced repetitive lifting

    , Article Human Factors ; 2021 ; 00187208 (ISSN) Kazemi, Z ; Mazloumi, A ; Arjmand, N ; Keihani, A ; Karimi, Z ; Ghasemi, M. S ; Kordi, R ; Sharif University of Technology
    SAGE Publications Inc  2021
    Abstract
    Objective: Spine kinematics, kinetics, and trunk muscle activities were evaluated during different stages of a fatigue-induced symmetric lifting task over time. Background: Due to neuromuscular adaptations, postural behaviors of workers during lifting tasks are affected by fatigue. Comprehensive aspects of these adaptations remain to be investigated. Method: Eighteen volunteers repeatedly lifted a box until perceived exhaustion. Body center of mass (CoM), trunk and box kinematics, and feet center of pressure (CoP) were estimated by a motion capture system and force-plate. Electromyographic (EMG) signals of trunk/abdominal muscles were assessed using linear and nonlinear approaches. The L5-S1... 

    Design, fabrication, and accuracy of a novel noncovering lock-mechanism bilateral patient-specific drill guide template for nondeformed and deformed thoracic spines

    , Article HSS Journal ; Volume 17, Issue 2 , 2021 , Pages 213-222 ; 15563316 (ISSN) Ashouri Sanjani, M ; Mohammadi Moghadam, S ; Azimi, P ; Arjmand, N ; Sharif University of Technology
    SAGE Publications Inc  2021
    Abstract
    Background: Pedicle screw (PS) placement has been widely used in fusion surgeries on the thoracic spine. Achieving cost-effective yet accurate placements through nonradiation techniques remains challenging. Questions/Purposes: Novel noncovering lock-mechanism bilateral vertebra-specific drill guides for PS placement were designed/fabricated, and their accuracy for both nondeformed and deformed thoracic spines was tested. Methods: One nondeformed and 1 severe scoliosis human thoracic spine underwent computed tomographic (CT) scanning, and 2 identical proportions of each were 3-dimensional (3D) printed. Pedicle-specific optimal (no perforation) drilling trajectories were determined on the CT... 

    Real-time Tracking of the Lumbar Spine with Surgical Navigation System and Biomechanical Modeling

    , M.Sc. Thesis Sharif University of Technology Sarrami, Saman (Author) ; Behzadipour, Saeed (Supervisor) ; Farahmand, Farzam (Co-Advisor)
    Abstract
    One of the most important parts of the human’s body is spine. Its anatomy is very complex and has many degrees off freedom. Many kinds of diseases might occur for this part. One of the ways of treatment for this part is surgery that it has different types. In the past decades the surgeries have been done very simple without the help of computers or robots. In other words the surgeon did the surgery with no use of lateral tools. For this reason the error in those surgeries was high. Doing a surgery on the spine level needs a special attention. As the technology improved very much in the last 2 decades the amount of errors has been reduced and various kinds of techniques came in the scene to... 

    Effects of Shoe with Flexible Sole on Kinematics and Dynamics of Vertebral Column During Drop Vertical Jump

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Mohammad Mahdi (Author) ; Nourani, Amir (Supervisor)
    Abstract
    Disorders of the lumbar spine are prevalent within the realm of musculoskeletal issues, emphasizing the importance of investigating contributing factors. This research focuses on assessing how flexible footwear influences the kinematics and dynamics of the vertebral column during drop vertical jump. The study involves mechanical tests on various footwear types, including simple, flexible and re entrant shoes with differing levels of rigidity. Bending tests were performed on simple and flexible shoes with hardness of 50 Asker C and flexible shoes with hardness of 40 Asker C. Additionally, compression tests were carried out on all soles at two different angles. The Bending tests revealed that,... 

    Subsonic and transonic airfoil inverse design via Ball-Spine Algorithm

    , Article Computers and Fluids ; Volume 84 , 2013 , Pages 87-96 ; 00457930 (ISSN) Nili Ahmadabadi, M ; Ghadak, F ; Mohammadi, M ; Sharif University of Technology
    2013
    Abstract
    Inverse design in external flow regimes usually involves finding the wall shape associated with a prescribed distribution of wall pressure or velocity. In this research, a novel iterative inverse design method is developed for inviscid subsonic and transonic external flow regimes. The method links up a novel inverse design algorithm, called Ball-Spine Algorithm (BSA), and a 2D inviscid analysis code. The Euler equations are solved for a physical domain of which some unknown boundaries are iteratively modified via BSA until a prescribed pressure distribution is reached. In BSA, the unknown walls are composed of a set of virtual balls that move freely along the specified directions called...