Loading...
Search for: specimen-surfaces
0.005 seconds

    Optimization of air plasma sprayed thermal barrier coating parameters in diesel engine applications

    , Article Journal of Materials Engineering and Performance ; Volume 22, Issue 11 , 2013 , Pages 3530-3538 ; 10599495 (ISSN) Azadi, M ; Farrahi, G. H ; Moridi, A ; Sharif University of Technology
    2013
    Abstract
    In the present paper, an optimization of thermal barrier coating parameters is performed for diesel engine applications. The substrate is A356.0-T7, a cast aluminum alloy which has a vast application in diesel engines, and the alloy is coated by plasma sprayed ZrO2-8 wt.% Y2O3. Parameters including the feed rate of coating powders, the nozzle distance to specimen surfaces, and the coating thickness are optimized by thermal shock fatigue tests and bending tests. Optimum values of the feed rate and the nozzle distance are 30 g/min and 80 mm, respectively, when the objective is considered as maximizing the bending strength. Thermal shock tests demonstrate that lower thickness of coating layers... 

    Optimal experiment design for plasma thermal spray parameters at bending loads

    , Article International Journal of Surface Science and Engineering ; Volume 6, Issue 1-2 , 2012 , Pages 3-14 ; 1749785X (ISSN) Azadi, M ; Moridi, A ; Farrahi, G. H ; Sharif University of Technology
    2012
    Abstract
    Ceramic thermal barrier coatings are applied on gas turbines and diesel engine components to protect metals from heat and this enhances the service lifetime by means of a reduction in working temperature. In the present paper, optimisation of plasma thermal spray parameters, including feed rate and nozzle distance from the specimen surface is performed by using the design of experiment method. Due to factorial approach, by considering two parameters with three variation levels, nine experiments of bending test are needed. The base material is cast aluminium alloy, A356.0-T7. The coating layers consist of a bond coat, Ni-Cr-Al-Y with a thickness of 150 μm and a top coat, ZrO2-8wt%Y2O3 with a...