Loading...
Search for: specific-surface-area
0.004 seconds
Total 34 records

    Optimization of particle size and specific surface area of pellet feed in dry ball mill using central composite design

    , Article Indian Journal of Science and Technology ; Volume 9, Issue 44 , 2016 ; 09746846 (ISSN) Abazarpoor, A ; Halali, M ; Sharif University of Technology
    Indian Society for Education and Environment  2016
    Abstract
    Objective: The dimensional properties of iron ore pellet feed including specific surface area and particle size distribution in the ball mill was studied using response surface area method. Methods/Statistical analysis: The effect of the operational parameters of dry ball mill including ball charge (20-40%), grinding time (30-50 min) and balling distribution (Small, Mixed and Large) on dimensional properties of pellet feed was meticulously examined and optimized using response surface methodology based on Central Composite Design (CCD). Responses were 80% passing size (D80) and Blaine (BL). A total of 30 grinding experiments were designed and carried out in the CCD method. Regression models... 

    Mechanical and microstructural properties of cement paste incorporating nano silica particles with various specific surface areas

    , Article Key Engineering Materials, 8 July 2010 through 9 July 2010 ; Volume 478 , July , 2011 , Pages 19-24 ; 10139826 (ISSN) ; 9783037851357 (ISBN) Khaloo, A. R ; Vayghan, A. G ; Bolhasani, M ; Sharif University of Technology
    2011
    Abstract
    In this study, the effect of agglomeration and non-uniform dispersion of silica particles on the mechanical and microstructural properties of cement paste incorporating silica fume and nanosilica (NS) with various specific surface areas (SSA) is experimentally investigated. The SSA and replacement percent of silica particles were considered as test variables and four series of mixes were made including one set of mixes for silica fume with a SSA of 20 m2/g and three sets of mixes for three different types of NS with SSA equal to 90, 200 and 380 m2/g. In each series of mix designs three different cement replacement percents of 1.5%, 3% and 5% were applied. The results indicate that as the SSA... 

    Facile synthesis of nanoporous CuS nanospheres for high-performance supercapacitor electrodes

    , Article Journal of Energy Chemistry ; Volume 26, Issue 4 , 2017 , Pages 762-767 ; 20954956 (ISSN) Heydari, H ; Moosavifard, S. E ; Shahraki, M ; Elyasi, S ; Sharif University of Technology
    Abstract
    In recent years, development of high-performance supercapacitor electrode materials has stimulated a great deal of scientific research. The electrochemical performance of a supercapacitor strongly depends on its material structures. Herein, we report a simple strategy for high-performance supercapacitors by building pseudocapacitive CuS nanospheres with nanoporous structures, nanosized walls (<10 nm) and relatively large specific surface area of 65 m2/g. This electrode demonstrates excellent electrochemical performance including a maximum specific capacitance of 814 F/g at 1 A/g, significant rate capability of 42% capacitance retention at an ultrafast rate of 50 A/g, and outstanding... 

    Semiconductor TiO2-Ga2O3 thin film gas sensors derived from particulate sol-gel route

    , Article Acta Materialia ; Volume 55, Issue 13 , 2007 , Pages 4455-4466 ; 13596454 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2007
    Abstract
    Nanostructured and mesoporous TiO2-Ga2O3 thin films with various Ti:Ga atomic ratios were prepared by a new straightforward particulate sol-gel route. Titanium isopropoxide and gallium (III) nitrate hydrate were used as precursors, and hydroxypropyl cellulose (HPC) was used as a polymeric fugitive agent (PFA) in order to increase the specific surface area (SSA). XRD and TEM analysis of the powders revealed that the Ga2O3 formed from the nitrate precursor retarded anatase-to-rutile transformation, crystallization and crystal growth. The average crystallite size of pure TiO2 powder annealed at 600-1000 °C were in the range 4-10 nm; the values that could be decreased to 2-6 nm for TiO2-Ga2O3... 

    Synthesis of high surface area nanocrystalline anatase-TiO2 powders derived from particulate sol-gel route by tailoring processing parameters

    , Article Journal of Sol-Gel Science and Technology ; Volume 40, Issue 1 , 2006 , Pages 15-23 ; 09280707 (ISSN) Mohammadi, M. R ; Cordero Cabrera, M. C ; Ghorbani, M ; Fray, D.J ; Sharif University of Technology
    2006
    Abstract
    Stabilised titania sols were prepared using an additive free particulate sol-gel route, via electrostatic stabilisation mechanism, with various processing parameters. Peptisation temperature, 50°C and 70°C, and TiO2 concentration, 0.1, 0.2 and 0.4 molar, were chosen as processing parameters during sol preparation. Results from TiO2 particle size and zeta potential of sols revealed that the smallest titania hydrodynamic diameter (13 nm) and the highest zeta potential (47.7 mV) were obtained for the sol produced at the lower peptisation temperature of 50°C and lower TiO 2 concentration of 0.1 M. On the other hand, between the sols prepared at 70°C, smaller titania particles (20 nm) and higher... 

    Preparation of high surface area titania (TiO2) films and powders using particulate sol-gel route aided by polymeric fugitive agents

    , Article Sensors and Actuators, B: Chemical ; Volume 120, Issue 1 , 2006 , Pages 86-95 ; 09254005 (ISSN) Mohammadi, M. R ; Cordero Cabrera, M. C ; Fray, D. J ; Ghorbani, M ; Sharif University of Technology
    2006
    Abstract
    High specific surface area (SSA) nanocrystalline powders and dip-coated TiO2 films have been prepared by particulate sol-gel route aided with polymeric fugitive agents (PFA), namely trehalose dihydrate (THD), polyethylene glycol (PEG6000) and hydroxypropyl cellulose (HPC). Powders obtained without PFA, heat-treated at 160 °C show a SSA of 181 m2/g, a value that could be increased up to 271 and 223 m2/g for samples heat-treated at 300 °C when PEG6000 and HPC were used, respectively, whereas SSA of 201 m2/g were achieved by using THD and subsequence heat-treating at 500 °C. Such surface area is one of the highest reported in the literature under these conditions. Crystallite sizes vary from 1... 

    Synthesis and characterization of NiCo2O4 nanorods for preparation of supercapacitor electrodes

    , Article Journal of Solid State Electrochemistry ; Vol. 19, Issue. 1 , 2014 , pp. 269-274 ; ISSN: 1432-8488 Jokar, E ; Zad, A. I ; Shahrokhian, S ; Sharif University of Technology
    Abstract
    Here, a solvothermal method for synthesis of porous Ni–Co binary oxide (NiCo2O4) nanorods followed by thermal decomposition is described. The prepared nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer Emmett Teller (BET) methods. These porous NiCo2O4 nanostructures were promising candidates in the development of high capacity supercapacitors and having excellent cycling performance due to high specific surface area. In addition, the influence of annealing rate on the structure and electrochemical behavior of the synthesized nanorods was investigated. The results showed that the annealing rate had a direct effect on the crystalline... 

    Development and biomedical application of nanocomposites: In situ fabrication of ZnO-PbO nanocomposite through microwave method

    , Article Materials Technology ; Vol. 29, issue. 4 , July , 2014 , p. 227-231 Rajabi, A ; Aieneravaie, M ; Dorosti, V ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    A novel nanocomposite of ZnO-PbO with flower-like nanostructure was fabricated from zinc acetate and lead nitrate as principle raw materials via an in situ process. The novelty of this study consists in the use of a common approach for fabricating of ZnO and PbO nanoparticles simultaneously. From these experiments the conclusion might be drawn that Zn(NH4) 2 4+ ions and Pb(OH)2 act as precursors for the nucleation and growth of ZnO and PbO respectively under microwave irradiation. The precursors formation were carried at two stages: reaction between zinc ions and lead nitrate with ammonium ion and hydroxide sodium respectively. The average crystalline size of Zno and PbO has been analysed by... 

    Rapid growth of hydroxyapatite nanoparticles using ultrasonic irradiation

    , Article Ultrasonics Sonochemistry ; Volume 17, Issue 5 , Jun , 2010 , Pages 853-856 ; 13504177 (ISSN) Rouhani, P ; Taghavinia, N ; Rouhani, S ; Sharif University of Technology
    2010
    Abstract
    A rapid, environmental friendly and low-cost method to prepare hydroxyapatite nanoparticles is proposed. In this method, hydroxyapatite is produced in a sonicated pseudo-body solution. The sonication time was found effective in the formation of the crystalline phase of nanoparticles. In our experimental condition, 15 min sonication resulted in the most pure hydroxyapatite phase. Also it was shown that growth temperature is a crucial factor and hydroxyapatite crystallizes only at 37 °C. The particles formed by sonication were generally smaller and more spherical than those obtained without sonication. Sonication increased the hydroxyapatite crystal growth rate up to 5.5 times compared to... 

    Synthesis of carbon-based spinel nico2o4 nanocomposite and its application as an electrochemical capacitor

    , Article Journal of Electronic Materials ; Volume 46, Issue 8 , 2017 , Pages 4948-4954 ; 03615235 (ISSN) Shahraki, M ; Elyasi, S ; Heydari, H ; Dalir, N ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    In this study, a thermal method was used to synthesize spinel NiCo2O4 and carbon nanotubes (CNTs)@NiCo2O4 with an average size 50 nm and 20 nm, respectively. Addition of CNTs into NiCo2O4 noticeably increases the active surface area compared to pure spinel NiCo2O4. SEM analyses showed that the morphologies are spherical in both pure and composite samples. Uniform CNTs@NiCo2O4 nanoparticles exhibit high specific capacitance of 210 F g−1 at 2 A g−1 and a good retention capacity of 92.70% after 2500 cycles, which shows a considerable improvement compared to NiCo2O4. Additionally, an exceptional rate capability of about 73.2% was obtained at 50 A g−1. Such remarkable electrochemical performance... 

    Nanoporous CuS nano-hollow spheres as advanced material for high-performance supercapacitors

    , Article Applied Surface Science ; Volume 394 , 2017 , Pages 425-430 ; 01694332 (ISSN) Heydari, H ; Moosavifard, S. E ; Elyasi, S ; Shahraki, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Due to unique advantages, the development of high-performance supercapacitors has stimulated a great deal of scientific research over the past decade. The electrochemical performance of a supercapacitor is strongly affected by the surface and structural properties of its electrode materials. Herein, we report a facile synthesis of high-performance supercapacitor electrode material based on CuS nano-hollow spheres with nanoporous structures, large specific surface area (97 m2 g−1) and nanoscale shell thickness (<20 nm). This interesting electrode structure plays a key role in providing more active sites for electrochemical reactions, short ion and electron diffusion pathways and facilitated... 

    Review - Towards the two-dimensional hexagonal boron nitride (2D h-BN) electrochemical sensing platforms

    , Article Journal of the Electrochemical Society ; Volume 167, Issue 12 , 2020 Angizi, S ; Khalaj, M ; Alem, S. A. A ; Pakdel, A ; Willander, M ; Hatamie, A ; Simchi, A ; Sharif University of Technology
    IOP Publishing Ltd  2020
    Abstract
    Electrochemical sensing performance of two-dimensional hexagonal boron nitride (2D h-BN) has traditionally been suppressed by their intrinsic electrical insulation and deficient electron transportation mechanism. However, the excellent electrocatalytic activity, high specific surface area, N- and B-active edges, structural defects, adjustable band gap through interaction with other nanomaterials, and chemical functionalization, makes 2D h-BN ideal for many sensing applications. Therefore, finding a pathway to modulate the electronic properties of 2D h-BN while the intrinsic characteristics are well preserved, will evolve a new generation of highly sensitive and selective electrochemical... 

    A simple particulate sol-gel route to synthesize nanostructural TiO2-Ta2O5 binary oxides and their characteristics

    , Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 142, Issue 1 , 2007 , Pages 16-27 ; 09215107 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sadrnezhaad, S. K ; Mohammadi, A ; Sharif University of Technology
    2007
    Abstract
    Nanostructured and mesoporous TiO2-Ta2O5 films and powders with various TiO2:Ta2O5 molar ratios and high specific surface area (SSA) have been prepared by a straightforward particulate sol-gel route. Titanium isopropoxide and tantalum ethoxide were used as precursors and hydroxypropyl cellulose (HPC) was used as a polymeric fugitive agent (PFA) in order to increase the SSA. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that powders contained both hexagonal δ-Ta2O5 and monoclinic β-Ta2O5 phases, as well as anatase and rutile. It was observed that Ta2O5 retarded anatase-to-rutile transformation. Furthermore, δ → β phase transformation temperature increased... 

    Preparation and characterisation of nanostructural TiO2-Er 2O3 binary oxides with high surface area derived from particulate sol-gel route

    , Article Materials Science and Technology ; Volume 22, Issue 8 , 2006 , Pages 965-974 ; 02670836 (ISSN) Mohammadi, M. R ; Ghorbani, M ; Fray, D. J ; Sharif University of Technology
    2006
    Abstract
    Nanostructured and nanoporous TiO2-Er2O3 films and powders with various TiO2 : Er2O3 molar ratios and high specific surface area (SSA) have been prepared by a new straightforward particulate sol-gel route. X-ray diffraction and Fourier transform infrared spectroscopy revealed that erbium oxide formed in the range 50-100 mol.-%Er2O3, whereas erbium dititanate formed in the range 25-100 mol.-%Er2O3. Oxygen deficient titania phases (TiO2-x), such as Ti7O13 and Ti 2O3, were observed for TiO2:Er 2O3=25:75 (molar ratio) system annealed at 800°C. It was observed that Er2O3 retarded anatase to rutile transformation. Furthermore, TEM analysis also showed that Er2O 3 hindered the crystallisation and... 

    Spinel H4Ti5O12 nanotubes for Li recovery from aqueous solutions: Thermodynamics and kinetics study

    , Article Journal of Environmental Chemical Engineering ; Volume 9, Issue 1 , 2021 ; 22133437 (ISSN) Shoghi, A ; Ghasemi, S ; Askari, M ; Khosravi, A ; Hasan Zadeh, A ; Alamolhoda, A. A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, H4Ti5O12 nanotubes have been prepared as Li+ adsorbent by acid treatment of Li4Ti5O12 nanotubes. Li4Ti5O12 nanotubes were synthesized via a hydrothermal method in which TiO2(B) nanNotubes were used as a precursor. The prepared Li-ion sieve showed a significant high ion-exchange capacity (160.6 mgg−1) for lithium ions due to its large specific surface area of 115.4 m2 g-1 compared to the other related studies. The kinetics and isotherm investigation revealed that the pseudo-second-order equation well described the adsorption kinetics, and the Langmuir model well fitted the isotherm data. Furthermore, the low value of adsorption energy obtained from the Dubinin-Radushkevitch... 

    MnO2/ordered mesoporous carbon nanocomposite for electrochemical supercapacitor

    , Article Journal of Solid State Electrochemistry ; Vol. 18, issue. 4 , 2014 , pp. 1117-1125 Kiani, M. A ; Khani, H ; Mohammadi, N ; Sharif University of Technology
    Abstract
    The preparation of composite manganese dioxide (MnO2) nanoparticles in an ordered mesoporous carbon (CMK-3) matrix and its use for constructing a new wide-potential-window supercapacitor is reported. CMK-3 is prepared using mesoporous silica as a hard template and sucrose as carbon source. The different ratios of MnO2/CMK-3 composite is synthesized by impregnating CMK-3 with a Mn(NO3)2·4H 2O solution followed by annealing in nitrogen. Physical properties, morphology, and specific surface area were characterized by X-ray diffraction, transmission electron microscopy, and nitrogen sorption measurements, respectively. The electrochemical properties of the composite were studied by cyclic... 

    Conductive polymer-based microextraction methods: A review

    , Article Analytica Chimica Acta ; Volume 767, Issue 1 , March , 2013 , Pages 1-13 ; 00032670 (ISSN) Bagheri, H ; Ayazi, Z ; Naderi, M ; Sharif University of Technology
    2013
    Abstract
    Conductive polymers (CPs) are classified as materials which exhibit highly reversible redox behavior and the unusual combined properties of metal and plastics. CPs, due to their multifunctionality, ease of synthesis and their stability, have attracted more attentions in different fields of research, including sample preparation. CPs along with several commercial hydrophilic sorbents, are alternative to the commercially available hydrophobic sorbents which despite their high specific surface areas, have poor interactions and retentions in the extraction of polar compounds. This review covers a general overview regarding the recent progress and new applications of CPs toward their synthesis... 

    Correlations for prediction of specific surface area and bulk and apparent densities of porous styrene-divinylbenzene copolymers

    , Article Journal of Applied Polymer Science ; Volume 120, Issue 4 , 2011 , Pages 1942-1949 ; 00218995 (ISSN) Nodehi, A ; Hajiebrahimi, M ; Parvazinia, M ; Shahrokhi, M ; Abedini, H ; Sharif University of Technology
    Abstract
    Macroporous styrene-divinylbenzene copolymers with different degree of crosslinking were prepared by suspension polymerization in presence of different binary mixtures of toluene and heptane, as diluent. Specific surface area, bulk and apparent densities, and pore volume of the resulting beads were determined experimentally. Applying the least square method to the experimental data, correlations for prediction of these properties were obtained. Effects of divinylbenzene concentration, diluent to comonomer volume ratio, and composition of the diluent mixture were considered in developing the aforementioned correlations. The influence of the reaction recipe on porous structure of the samples... 

    Influence of different types of nano-SiO2 particles on properties of high-performance concrete

    , Article Construction and Building Materials ; Volume 113 , 2016 , Pages 188-201 ; 09500618 (ISSN) Khaloo, A ; Mobini, M. H ; Hosseini, P ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    The aim of this study was to evaluate the effects of applying low replacement ratios (0.75% and 1.50% of the binder weight) of nano-SiO2 particles with different specific surface areas (200 and 380 m2/g) on the properties of high-performance concrete (HPC). Mechanical (compressive and splitting tensile strengths), electrical resistivity, non-destructive (ultrasonic pulse velocity), and microstructural (mercury intrusion porosimetry, X-ray diffraction, and scanning electron microscopy) tests were conducted to investigate the macroscopic and microscopic effects of nano-SiO2 particles on HPC characteristics. The results indicated that the performance of nano-SiO2 particles significantly... 

    Investigating the permeability–porosity relation of percolation-based porous media using the lattice boltzmann method

    , Article Journal of Porous Media ; Volume 20, Issue 10 , 2017 , Pages 899-919 ; 1091028X (ISSN) Foroughi, S ; Masihi, M ; Jamshidi, S ; Pishvaie, M. R ; Sharif University of Technology
    Abstract
    The semi-empirical Kozeny–Carman (KC) equation is the widely used equation for determining permeability of porous media. Recent studies have shown that KC coefficient (CKC ) is a function of porous media parameters. In this study, the relation between parameters of randomly generated porous media is investigated to improve permeability prediction. In particular, site percolation theory is applied to construct random porous media. The static parameters of porous media, including porosity and specific surface area, are evaluated from porous media structure, and dynamic parameters, tortuosity and permeability, are derived from the results of Lattice Boltzmann fluid flow simulation....