Loading...
Search for: solution-algorithms
0.004 seconds
Total 23 records

    The large-scale dynamic maximal covering location problem

    , Article Mathematical and Computer Modelling ; Volume 57, Issue 3-4 , February , 2013 , Pages 710-719 ; 08957177 (ISSN) Zarandi, M. H. F ; Davari, S ; Sisakht, S. A. H ; Sharif University of Technology
    2013
    Abstract
    Most of the publications regarding the maxim covering location problem (MCLP) address the case where the decision is to be made for one period. In this paper, we deal with a rather untouched version of MCLP which is called dynamic MCLP (DMCLP). In order to solve this problem, a simulated annealing (SA) has been presented. The proposed solution algorithm is capable of solving problems with up to 2500 demand nodes and 200 potential facilities with a fair amount of exactness. Our experiments showed that the proposed approach finds solutions with errors less than one percent  

    Minimization of time to reach final speed in planing craft by optimal control of drive and trim tab angles

    , Article FAST 2013 - 12th International Conference on Fast Sea Transportation ; 2013 Yengejeh, M. A ; Seif, M. S ; Mehdigholi, H ; Sharif University of Technology
    FAST 2013 Secretariat  2013
    Abstract
    Properly adjusting the trim angle during the craft speed up, plays an important role in easily passing through the resistance hump and to reach final speed in minimum possible time. Present study tries to reply to this question that how the angles applied to a trimmable drive system and trim tab of the planing craft should be changed during speed up from rest, to craft reach a final speed in minimum time. This is a time-optimal control problem with the drive and trim tab angles as its control variables. To solve this problem a 3-DOF dynamic model is developed here rely on empirical data and relations. For the propulsion system operation of propeller, drive and engine altogether are taken... 

    A mathematical model for acceleration phase of aerodynamically alleviated catamarans and minimizing the time needed to reach final speed

    , Article Journal of Marine Science and Technology (Japan) ; Volume 21, Issue 3 , 2016 , Pages 458-470 ; 09484280 (ISSN) Azizi Yengeje, M ; Mehdigholi, H ; Seif, M. S ; Sharif University of Technology
    Springer-Verlag Tokyo 
    Abstract
    Racing catamarans use aerodynamic alleviation concept which in existing extreme ground effect significantly enhances the performance. Beside design measures, controlling strategies may be employed as convenient solutions to improve the performance and address concerns regarding poor stability in these crafts. Being of substantial importance for a racing catamaran to reach the final speed as soon as possible, this study attempts to find the optimal form of changing the drive angle (as control variable) to minimize its acceleration time. In this regard, a mathematical model is developed for forward acceleration phase of these catamarans based on empirical and theoretical methods. Then the... 

    Complementarity formulation and solution algorithm for auto-transit assignment problem

    , Article Transportation Research Record ; Volume 2673, Issue 4 , 2019 , Pages 384-397 ; 03611981 (ISSN) Zarrinmehr, A ; Aashtiani, H. Z ; Nie, Y. M ; Azizian, H ; Sharif University of Technology
    SAGE Publications Ltd  2019
    Abstract
    In this paper, a combined model of auto-transit assignment is introduced based on two complementarity formulations in the literature. The model accounts for interactions between the auto and transit modes through non-separable asymmetric demand and cost functions. A path-based solution algorithm is presented based on the three ideas of decomposition, column generation, and linearization, which have proved to be effective in tackling large-size networks. Numerical results over the Chicago sketch network suggest that the algorithm converges quickly within the first iterations, but is less effective as the solution gets closer to the neighborhood of the equilibrium solution. The sluggish... 

    Compatible numerical schemes for coupled flow and transport in porous media

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Zade, A. Q ; Manzari, M. T ; Hannani, S. K ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    In this paper, the compatibility of various combinations of numerical schemes for the solution of flow and transport equations in porous media is studied and the possible loss of accuracy and global mass conservation are investigated. Here, the flow equations are solved using three popular finite element methods including the Standard Galerkin (SG), Discontinuous Galerkin (DG) and Mixed Finite Element (MFE) methods among which only the DG method possesses the local conservation property. Besides, the transport of a scalar variable which is governed by a convection-diffusion equation is studied in conjunction with the flow equations. The transport equation is solved using both the Streamline... 

    Optimum inverse kinematic method for a 12 DOF manipulator

    , Article 2011 IEEE International Conference on Mechatronics and Automation, ICMA 2011, 7 August 2011 through 10 August 2011, Beijing ; 2011 , Pages 2020-2026 ; 9781424481149 (ISBN) Paramani, A. P ; Sharif University of Technology
    2011
    Abstract
    In General, there are two methods to analyse the inverse kinematic of manipulators, one of which can be selected with respect to the conditions and the type of the manipulator. One of the methods is the closed solution which is based on the analytical expressions or forth degree or less polynomial solution in which the calculations are non-repetitive. The other method is the numerical solution. In the numerical solutions, the numbers are repeated and generally it is much slower than the closed solutions. The slowness of this method is so noticeable in such a way that principally there is no interest to use the numerical solutions to solve kinematic equations. The purpose of the present paper... 

    An improved, fully symmetric, finite-strain phenomenological constitutive model for shape memory alloys

    , Article Finite Elements in Analysis and Design ; Volume 47, Issue 2 , 2011 , Pages 166-174 ; 0168874X (ISSN) Arghavani, J ; Auricchio, F ; Naghdabadi, R ; Reali, A ; Sharif University of Technology
    2011
    Abstract
    The ever increasing number of shape memory alloy applications has motivated the development of appropriate constitutive models taking into account large rotations and moderate or finite strains. Up to now proposed finite-strain constitutive models usually contain an asymmetric tensor in the definition of the limit (yield) function. To this end, in the present work, we propose an improved alternative constitutive model in which all quantities are symmetric. To conserve the volume during inelastic deformation, an exponential mapping is used to arrive at the time-discrete form of the evolution equation. Such a symmetric model simplifies the constitutive relations and as a result of less... 

    On the robustness and efficiency of integration algorithms for a 3D finite strain phenomenological SMA constitutive model

    , Article International Journal for Numerical Methods in Engineering ; Volume 85, Issue 1 , July , 2011 , Pages 107-134 ; 00295981 (ISSN) Arghavani, J ; Auricchio, F ; Naghdabadi, R ; Reali, A ; Sharif University of Technology
    2011
    Abstract
    Most devices based on shape memory alloys experience large rotations and moderate or finite strains. This motivates the development of finite-strain constitutive models together with the appropriate computational counterparts. To this end, in the present paper a three-dimensional finite-strain phenomenological constitutive model is investigated and a robust and efficient integration algorithm is proposed. Properly defining the variables, extensively used regularization schemes are avoided and a nucleation-completion criterion is defined. Moreover, introducing a logarithmic mapping, a new form of time-discrete equations is proposed. The solution algorithm as well as a suitable initial guess... 

    Assessment of cell-centered and cell-vertex finite volume approaches for computation of 2d structural dynamics on arbitrary quadrilateral grids

    , Article CMES - Computer Modeling in Engineering and Sciences ; Volume 106, Issue 6 , 2015 , Pages 395-439 ; 15261492 (ISSN) Hejranfar, K ; Azampour, M. H ; Sharif University of Technology
    Tech Science Press  2015
    Abstract
    In this study, cell-centered (CC) and cell-vertex (CV) finite volume (FV) approaches are applied and assessed for the simulation of two-dimensional structural dynamics on arbitrary quadrilateral grids. For the calculation of boundary nodes displacement in the CC FV approach, three methods are employed. The first method is a simple linear regression of displacement of boundary nodes from the displacement of interior cell centers. In the second method, an extrapolation technique is applied for this purpose and, in the third method; the line boundary cell technique is incorporated into the solution algorithm in an explicit manner. To study the effects of grid irregularity on the results of CC... 

    An efficient, non-regularized solution algorithm for a finite strain shape memory alloy constitutive model

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010, Istanbul ; Volume 4 , 2010 , Pages 131-138 ; 9780791849187 (ISBN) Arghavani, J ; Auricchio, F ; Naghdabadi, R ; Reali, A ; Sohrabpour, S ; Sharif University of Technology
    2010
    Abstract
    In this paper we investigate a three-dimensional finite-strain phenomenological constitutive model and propose an efficient solution algorithm by properly defining the variables and by avoiding extensively-used regularization schemes which increase the solution time. We define a nucleation-completion criterion and modify the regularized solution algorithm. Implementation of the proposed integration algorithm within a user-defined subroutine UMAT in the commercial nonlinear finite element software ABAQUS has made possible the solution of boundary value problems. The obtained results show the efficiency of the proposed solution algorithm and confirm the improved efficiency (in terms of... 

    The gardener problem with reservation policy and discount

    , Article Computers and Industrial Engineering ; Volume 123 , 2018 , Pages 82-102 ; 03608352 (ISSN) Sadralsharifi, S. S ; Pasandideh, S. H. R ; Akhavan Niaki, S. T ; Nahavandian, M. H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The Newsboy problem has always been an important issue in inventory management. The multi-product newsboy problem with random yield and budget constraint named as the Gardener Problem is one of the novels and popular extensions of the newsboy problem. Different from the existing studies, this paper presents a multi-product gardener problem with reservation policy. Moreover, a discount rate is offered to those customers who are willing to make reservations. In addition to the demand from the original customers, extra demand is included in the model due to the motivation received by the discount rate. A solution algorithm namely the multi-product gardener problem with reservation policy... 

    Lower-bound solution algorithm for equilibrium signal-setting problem

    , Article Transportation Research Record ; Issue 2085 , 2008 , Pages 104-110 ; 03611981 (ISSN) Sadabadi, K. F ; Zokaei Aashtiani, H ; Haghani, A ; Sharif University of Technology
    2008
    Abstract
    The equilibrium signal-setting problem is stated and subsequently formulated as a continuous equilibrium network design problem. The bilevel formulation is nonconvex and therefore cannot be solved for global optima by using descent solution algorithms. Therefore, a lower bound using a system optimal flow pattern is proposed that will be quite tight in both uncongested and highly congested network traffic situations. A solution algorithm based on the standard steepest-descent method is proposed for the lower-bound problem. Performance of the solution algorithm on a network problem is reported  

    General variable material property formulation for the solution of autofrettaged thick-walled tubes with constant axial strains

    , Article Journal of Pressure Vessel Technology, Transactions of the ASME ; Volume 130, Issue 4 , 2008 , Pages 0412091-0412097 ; 00949930 (ISSN) Farrahi, G. H ; Hosseinian, E ; Assempour, A ; Sharif University of Technology
    2008
    Abstract
    In this paper a general variable material property (VMP) formulation for the solution of thick-walled tubes with constant axial strains was developed and compared with the alternative VMP method that is called the Hencky program The VMP method was initially developed for the analysis of plane stress and plane strain states. However, the actual autofrettage process is under constant axial strain, i.e., open-end and closed-end conditions. Results indicate very good agreement with the Hencky program. Our method is simple, accurate, and very efficient, so that the number of iterations for convergence reduces approximately to one-tenth of Hencky program iterations. The solution algorithm for... 

    A rate-dependent constitutive equation for 5052 aluminum diaphragms

    , Article Materials and Design ; Vol. 60, Issue 1 , 2014 , pp. 13-20 ; ISSN: 02613069 Hosseini Kordkheili, S. A ; Ashrafian, M. M ; Toozandehjani, H ; Sharif University of Technology
    Abstract
    In this article, both experimental and numerical approaches are conducted to present a constitutive equation for 5052 aluminum diaphragms under quasi-static strain rate loadings. For this purpose the stress-strain curves at different strain rates are obtained using tensile tests. Brittle behavior during tensile tests is observed due to samples thin thicknesses. Employing Johnson-Cook constitutive equation no yields in reasonable agreement with these tensile tests results. Therefore, developing a more suitable constitutive equation for aluminum diaphragms is taken into consideration. This equation is then implemented into the commercial finite element software, ABAQUS, via a developed user... 

    Transfer optimization in transit networks: Headway and departure time coordination

    , Article IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC ; 2011 , Pages 1531-1536 ; 9781457721984 (ISBN) Khani, A ; Shafahi, Y ; Sharif University of Technology
    Abstract
    This paper studies the scheduling problem in transit networks in order to decrease transfer waiting time. Transfer waiting time is calculated based on headway and departure time of intersecting routes and is divided into two parts. The first part can be reduced by changing departure times and was studied by the authors previously. The focus of the present research, however, is to minimize the second part of the transfer waiting time, dependent on the headways. The proposed optimization model in this paper includes both parts and is a nonlinear mathematical programming model. The model is decomposed to the departure time setting model (DSM) and the headway setting model (HSM). A solution... 

    Constrained single period problem under demand uncertainty

    , Article Scientia Iranica ; Volume 18, Issue 6 , December , 2011 , Pages 1553-1563 ; 10263098 (ISSN) Taleizadeh, A. A ; Shavandi, H ; Haji, R ; Sharif University of Technology
    2011
    Abstract
    In this paper, we develop the multi-product, multi-constraint, Single Period Problem (SPP) with uncertain demands, considering an incremental discount situation. Three new models are presented for multi-product, multi-constraint SPP in fuzzy, stochastic and rough environments. We consider constraints, such as service rate, restriction on order quantity and restrictions on warehouse space and budget. We also consider that the order quantity is a multiplier of predefined batch size. Furthermore, three kinds of solution algorithm, (1) harmony search, (2) hybrid intelligent based on harmony search and fuzzy simulation and (3) hybrid intelligent based on harmony search and rough simulation, are... 

    Design model of axial flow compressor for high temperature power plants by latest loss models

    , Article 2011 Proceedings of the 3rd Conference on Thermal Power Plants, CTPP 2011, 18 October 2011 through 19 October 2011, Tehran ; 2011 ; 9781479905911 (ISBN) Eftari, M ; Jouybari, H. J ; Shahhoseini, M. R ; Rad, M ; Sharif University of Technology
    2011
    Abstract
    Design models of axial flow compressor are developed for high temperature power plants with Closed Brayton Cycle for energy conversion. in recent years, many efforts have been done for modeling and predicting of performance of these compressors on different conditions of speed and pressure ratio because of costly empirical experiments, and still are developing. The models are based on a mean-line through-flow analysis for free-vortex flow, account for the profile, secondary, end wall and tip clearance losses in the cascades. In this work, models of Lieblein, Koch-Smith, Herrig, Johnsen-Bullock, Pollard-Gostelow, Aungier, Hunter-Cumpsty, Reneau are implemented to consider single stage... 

    The control of a thermal system with large time delay using of LQG and lead-compensator

    , Article 2010 IEEE International Conference on Mechatronics and Automation, ICMA 2010, 4 August 2010 through 7 August 2010 ; August , 2010 , Pages 1842-1847 ; 9781424451418 (ISBN) Zareh, S. H ; Jahromi, A. F ; Abbasi, M ; Khayyat, A. A ; Sharif University of Technology
    2010
    Abstract
    This paper will first describe the Linear-Quadratic-Gaussian (LQG) and Lead-Compensator when the Proportional-Integral-Derivative (PID) controllers are inactive for procedures that have large delay time (LDT) in transfer stage. Therefore in those states, LQG and Lead Compensator perform better than the PID controllers. The constrained LQG is optimal and stabilizing. The solution algorithm is guaranteed to terminate in finite time with a computational cost that has a reasonable upper bound compared to the minimal cost for computing the optimal solution. In this work all actual working area condition for instance noises and disturbances are considered. Eventually, LQG and Lead Compensator have... 

    Robust model and solution algorithm for the railroad blocking problem under uncertainty

    , Article Scientia Iranica ; Volume 25, Issue 4 , 2018 , Pages 1916-1930 ; 10263098 (ISSN) Hasany, R. M ; Shafahi, Y ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    The railroad blocking problem emerges as an important issue at the tactical level of planning in freight rail transportation. This problem consists of determining the optimal paths for freight cars in a rail network. Often, demand and supply resource indicators are assumed certain; hence, the solution obtained from a certain model might not be optimal or even feasible in practice due to the stochastic nature of these parameters. To address this issue, this paper develops a robust model for this problem with uncertain demand and travel time as supply resource indicators. Since the model combines integer variables and nonlinear functions, a branch-And-cut algorithm is used to solve the... 

    Catamaran motion simulation based on moving grid technique

    , Article Journal of Marine Science and Technology ; Volume 17, Issue 2 , 2009 , Pages 128-136 ; 10232796 (ISSN) Jahanbakhsh, E ; Panahi, R ; Seif, M. S ; Sharif University of Technology
    2009
    Abstract
    General purpose software is developed to simulate 6-DoF fluid-structure interaction in two-phase viscous flow. It is a VoF-fractional step solver based on the finite-volume discretization which uses a boundary-fitted body-attached hexahedral grid as the motion simulation strategy. As an application, a high-speed planing catamaran is simulated in steady forward motion as well as in turning maneuver. Results are compared with the available data and good qualitative and quantitative agreements are achieved. Numerical schemes and the solution algorithm of the software are consistent and show a good capability to model highly nonlinear ship motions. It can be further developed to represent a more...