Loading...
Search for: solid-wall
0.005 seconds

    Developing consistent inlet boundary conditions to study the entrance zone in microchannels

    , Article Journal of Thermophysics and Heat Transfer ; Volume 21, Issue 3 , 2007 , Pages 596-607 ; 08878722 (ISSN) Darbandi, M ; Vakilipour, S ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2007
    Abstract
    One important point in microflow study is the correct consideration of the Knudsen layer. In addition to the many complexities behind numerical simulation of the Knudsen layer near the solid walls, there are serious uncertainties at the microchannel inlet (the point at which the flow enters the microdomain). One major difficulty is the appearance of two singularities at the two corners of the inlet section. They seriously affect the solution in the entrance region of microchannels in which the lengths are comparable with the lengths of their hydrodynamic developing zones. Although the macro inlet flow problem has been largely investigated, there has been little attempt to study the issue in... 

    Simulation of Behavior of a Single Cavitating Bubble Near Solid Boundariesby solvingTwophase Navier-Stokes Equations with a Central Difference Finite Volume Method

    , M.Sc. Thesis Sharif University of Technology Mortezazadeh Dorostkar, Mohammad (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present work, the deformation and collapse of a single cavitating bubble near solid boundaries is simulated by solving the preconditioned, homogenous, multiphaseNavier-Stokes equations. Up to now, all studies in the literature performed by the volume of fluid (VOF)approach to capture the bubble surface have been based on the pressure-based category in which the flow variables are calculated through solving the Poisson equation. Here, the density-based category is applied and the solution methodology is based on the artificial compressibility approach. The compressible form of the Navier-Stokes equations is applied inside the bubble and the liquid phase is assumed to be incompressible.... 

    Evaluation of Endurance Time Method in Nonlinear Dynamic Analysis of Unreinforced Brick Masonry Buildings

    , M.Sc. Thesis Sharif University of Technology Kiani Nia, Mohammad Ali (Author) ; Esmaeil Pourestekanchi, Homayoon (Supervisor)
    Abstract
    The existing statistical studies implies that in Iran like most of developing countries, the great percent of houses are traditional. Statistics of the most disastrous current quakes also show damages caused by masonry structures in developing countries. The main problem of brick and masonry structures especially the unreinforced one is their weak performance against quake. Different methods are use to analyse the seismic performance of this structures. The modern endurance time method is a kind of time history analysis using standard increasing accelerograms which examines different parameters of structure behavior during excitation actions. In this project we analyse these structures using... 

    A systematic method for the complex walls no-slip boundary condition modeling in dissipative particle dynamics

    , Article Scientia Iranica ; Volume 18, Issue 6 , December , 2011 , Pages 1253-1260 ; 10263098 (ISSN) Mehboudi, A ; Saidi, M. S ; Sharif University of Technology
    2011
    Abstract
    The dissipative particle dynamics method is an efficient method for studying the hydrodynamics of complex fluids. One of the most challenging aspects of this method appears when the solid walls exist. The solid walls disturb the homogeneity of the fluid near the wall and cause some spurious fluctuations. Thus, in recent years a large amount of effort has been devoted to solve this shortcoming. Fortunately the mentioned problem has almost been solved for the simple walls such as flat walls, circular cylinders, spheres, etc. However no systematic model has addressed the complex walls. It should be noted that almost all of the walls we deal with in practical problems such as MEMS devices,... 

    Fluid flow and heat transfer in microchannel with and without porous medium under constant heat flux

    , Article Sadhana - Academy Proceedings in Engineering Sciences ; Volume 47, Issue 2 , 2022 ; 02562499 (ISSN) Shamsoddini Lori, M ; Sharif University of Technology
    Springer  2022
    Abstract
    In this study, the heat transfer and fluid flow characteristics of a three-dimensional microchannel that is partially filled with a layer of porous medium at its bottom solid wall is investigated. The microchannel is consisted of a clear fluid flow region, solid walls and a porous layer that is attached to its solid bottom wall. A constant heat flux is applied to the bottom wall of the microchannel. Darcy-Brinkman-Forchheimer model is used to simulate the fluid flow inside the porous medium. The novelty of this work is to investigate thoroughly and precisely the effect of using of porous layer configuration in MCHSs on hydraulic and thermal performances. The effect of porous layer thickness,...