Loading...
Search for: soil-mechanics
0.007 seconds
Total 60 records

    Behavior of dry and saturated soils under impact load during dynamic compaction

    , Article 16th International Conference on Soil Mechanics and Geotechnical Engineering: Geotechnology in Harmony with the Global Environment, ICSMGE 2005, Osaka, 12 September 2005 through 16 September 2005 ; Volume 3 , 2005 , Pages 1245-1248 ; 9059660285 (ISBN); 9789059660281 (ISBN) Pak, A ; Shahir, H ; Ghassemi, A ; Sharif University of Technology
    2005
    Abstract
    Dynamic compaction is a widely used soil improvement method in dry and/or saturated soils. Despite its vast application, its design basis is still empirical and the mechanisms that are involved in the procedure are not fully understood. A fully coupled dynamic finite element code has been developed in order to clarify the ambiguities in the process and predict the strain/displacement field in the ground, determine depth and degree of improvement, and also calculate the pore pressure variation during the process. This model can be used as a rational design tool for dynamic compaction projects  

    Study of Stability of Unsaturated Railway Embankment Founded on Saline and Desalinated Loess

    , M.Sc. Thesis Sharif University of Technology Kolahdooz, Ali (Author) ; Ahmadi, Mohammad Mehdi (Supervisor)
    Abstract
    Loess with a dispersion potential is one of the problematic soils of Iran. This study aims to investigate the impact of dispersion potential on the water flow in a three-phase medium and determine the effect of salinity on the stability of an unsaturated railway embankment by employing the soil-water retention curves of the materials. To satisfy this objective, the natural dispersive loess of the Chabahar region is desalinated in this study and the hydraulic properties of both saline and desalinated soils are comprehensively investigated. First, the soil-water retention curves of the materials are measured through the filter paper test method. Afterward, the saturated hydraulic conductivity... 

    Hydro-mechanical behavior of collapsible soils in unsaturated soil mechanics context

    , Article 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015, 9 November 2015 through 13 November 2015 ; November , 2015 , Pages 25-40 Haeri, S. M ; Association for Disaster Prevention Research; et al.; Fukuoka Convention and Visitors Bureau; Japan Society for the Promotion of Science - Grant-in-Aid for Publication of Scientific Research Results; Kyushu Regional Planning Association; The Maeda Engineering Foundation ; Sharif University of Technology
    Asian Regional Conference on Soil Mechanics and Geotechnical Engineering  2015
    Abstract
    This paper is related to the studies taken place during last decade to understand the intact behavior of a Collapsible Loess subjected to loading and wetting at Advanced Soil Mechanics Laboratory of Sharif University of Technology, Tehran, Iran. In this regard intact block samples are carefully taken from Hezar Pich Hill in the city of Gorgan, Iran, and various tests are performed on undisturbed specimens recovered from the intact block samples. In this way three automated unsaturated oedometer are built and a conventional triaxial apparatus is upgraded to a fully automated unsaturated triaxial device to accommodate rigorous and different stress and wetting path with continuous data... 

    In situ horizontal stress from CPT in sand: a new approach

    , Article International Journal of Geotechnical Engineering ; Volume 13, Issue 6 , 2019 , Pages 538-547 ; 19386362 (ISSN) Ahmadi, M. M ; Golestani Dariani, A. A ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Despite the various approaches in the literature adopted for analysing cone penetration test (CPT), determination of the initial horizontal stress and relative density of a sandy soil during this test has not been tackled yet. In order to propose a new method in this regard, a numerical study of CPT has been performed and the predicted results have been compared with several databases of comprehensive calibration chamber tests. The penetration mechanism has been then fully investigated by presenting different kinds of outputs for the surrounding soil. Finally, an innovative procedure has been suggested for estimating the initial horizontal stress and relative density during performing CPT in... 

    In situ horizontal stress from CPT in sand: a new approach

    , Article International Journal of Geotechnical Engineering ; Volume 13, Issue 6 , 2019 , Pages 538-547 ; 19386362 (ISSN) Ahmadi, M. M ; Golestani Dariani, A. A ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Despite the various approaches in the literature adopted for analysing cone penetration test (CPT), determination of the initial horizontal stress and relative density of a sandy soil during this test has not been tackled yet. In order to propose a new method in this regard, a numerical study of CPT has been performed and the predicted results have been compared with several databases of comprehensive calibration chamber tests. The penetration mechanism has been then fully investigated by presenting different kinds of outputs for the surrounding soil. Finally, an innovative procedure has been suggested for estimating the initial horizontal stress and relative density during performing CPT in... 

    An effective stress-based parametric study on the seismic stability of unsaturated slopes with implications for preliminary microzonation

    , Article Bulletin of Engineering Geology and the Environment ; Volume 80, Issue 10 , 2021 , Pages 7525-7549 ; 14359529 (ISSN) Garakani, A.A ; Molaei Birgani, M ; Sadeghi, H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    The stability of unsaturated slopes under seismic loading has become an important issue over the past few years which is the indication of its practical significance in geoengineering. This study aims at exploring the seismic stability of unsaturated sandy clay and silty clayey sand slopes using 2D limit equilibrium analysis for different slope geometries and ground water levels. To this end, the pseudo-static and the displacement-based sliding block Newmark’s approaches are employed for parametric studies by considering the records of the 2003 earthquake that devastated the city of Bam, in the southeast of Iran. In all analyses, the unsaturated state of the soil materials is taken into... 

    Impact of Hydraulic Hysteresis on Hydro-mechanical Behaviour of Infilled Fractured Rocks in Unsaturated Condition

    , M.Sc. Thesis Sharif University of Technology Mousavi, Masoud (Author) ; Khosravi, Ali (Supervisor)
    Abstract
    Recent studies have shown that comprehensive characterization of the behavior of infilled rock fractures under saturated and unsaturated conditions requires knowledge of morphological details of fracture surface, as well as state of stress of infill materials and their initial innate conditions (e.g., void ratio, water content, degree of saturation and dry density). This study presents the details and typical results from a new testing approach to study the hydro-mechanical behavior of the infilled rock fractures under different stress states and saturation conditions. The new testing approach incorporates the axis translation technique for suction control, a flow pump for the measurement of... 

    Assessing the Hydro-Mechanical Behavior of Undisturbed Collapsible Soils by Conducting Unsaturated Odeometer Tests Case Study: Northeastern Loess of Golestan Province

    , M.Sc. Thesis Sharif University of Technology Tavasoli, Iman (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    The deposits in many regions in Iran, particularly eastern zones like Golestan, Semnan, Yazd, Kerman, Hormozgan, Sistan and Baluchestan provinces consist of deposits of loess, which are categorized as collapsible soils. This kind of soil show sufficient shear strength and low deformability in dry or natural condition. However, if a structure is built on the soil and water seeps or infiltrates into the soil due to several reasons such as sewer leakage, water seepage or heavy precipitations in a way that its moisture reaches to a critical value, the interparticle bonds may break or the present suction in the soil may decrease in a way that the soil experiences sudden collapse, which may result... 

    Assessment of the Hydro-Mechanical and Shear Behavior of Collapsible Soils by Using Suction- Controlled Triaxial Apparatus- A Case Study: Loess of Gorgan

    , M.Sc. Thesis Sharif University of Technology Ghazi Zadeh, Shahin (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    In geotechnical engineering, collapsible soils as a part of problematic soils has an extreme importance since as a mutual effects of applying load and increasing their water content, Soil’s inter-particle forces become weak, and therefore, the soil experiences sudden large volumetric change known as collapse. Foundations built on these soils might experience sudden, large settlement. Collapsible soils exist in almost all continents, and many damages are reported due to the collapse phenomenon of these soils.
    Due to the importance of this issue, and lack of comprehensive studies related to the volumetric and shear behavior of these soils, in this study, triaxial wetting test are performed... 

    Dynamic analysis of a rigid circular foundation on a transversely isotropic half-space under a buried inclined time-harmonic load

    , Article Soil Dynamics and Earthquake Engineering ; Vol. 63, issue , 2014 , pp. 184-192 Eskandari, M ; Ahmadi, S. F ; Khazaeli, S ; Sharif University of Technology
    Abstract
    The dynamic analysis of a surface rigid foundation in smooth contact with a transversely isotropic half-space under a buried inclined time-harmonic load is addressed. By virtue of the superposition technique, appropriate Green[U+05F3]s functions, and employing further mathematical techniques, solution of the mixed-boundary-value problem is expressed in terms of two well-known Fredholm integral equations. Two limiting cases of the problem corresponding to the static loading and isotropic medium are considered and the available results in the literature are fully recovered. For the static case, the results pertinent to both frictionless and bonded contacts are obtained and compared. With the... 

    The effect of calcite cementation on the mechanical behavior of gravely sands

    , Article 14th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, 23 May 2011 through 27 May 2011, Hong Kong ; 2011 Adl, M. R ; Sharif University of Technology
    Abstract
    The behavior of a cemented gravely sand is studied using triaxial tests. Undrained tests were performed on saturated specimens, and stress-strain characteristics of the soil, along with volumetric and pore pressure changes, were recognized. Artificially cemented samples are prepared using calcite crystallization as the cementing agent in different percentages. The tests were done in usual range of confining pressures, from 50 to 1200 kPa. The results shows that dilation occurs even at highest confining pressure and least cement content. Also the friction angle of soils increases slightly with cement content, but cohesion intercept increasing is more noticeable  

    Hardening behavior of a hydro collapsible loessial soil

    , Article 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015, 9 November 2015 through 13 November 2015 ; September , 2015 , Pages 253-257 Haeri, S. M ; Garakani, A. A ; Association for Disaster Prevention Research; et al.; Fukuoka Convention and Visitors Bureau; Japan Society for the Promotion of Science - Grant-in-Aid for Publication of Scientific Research Results; Kyushu Regional Planning Association; The Maeda Engineering Foundation ; Sharif University of Technology
    Asian Regional Conference on Soil Mechanics and Geotechnical Engineering  2015
    Abstract
    Hydro collapsible soils are of kinds of problematic soils which show high shear strength at low degrees of saturation but due to wetting, their Meta stable structure collapses and will be subjected to large deformation. In this study by applying isotropic triaxial loadings to undisturbed samples, mechanical behavior of a highly collapsible loessial soil has been assessed. During tests, matric suction of the samples was controlled as well as the mean net stress, and the variation of the degree of saturation was monitored continuously. Two types of stress paths were conducted on the samples namely "Isotropic induced collapse" under applying constant matric suctions and "wetting induced... 

    Impact of void ratio and state parameters on the small strain shear modulus of unsaturated soils

    , Article 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015: New Innovations and Sustainability ; 2015 , Pages 241-246 Khosravi, A ; Gheibi, A ; Rahimi, M ; McCartney, J. S ; Haeri, S. M
    Abstract
    The unsaturated small strain shear modulus, Gmax, is a key reference value in predicting relationships between dynamic shear modulus and shear strain amplitude and is thus a key quantity to properly model the behavior of dynamically-loaded geotechnical systems such as pavements, rail beds, and machine foundations. From the interpretation of the experimental Gmax results for unsaturated soils, different definitions of trends between Gmax and the stress state of the unsaturated soils and material properties are proposed. However, in most of trends, the relationship between the stress state and void ratio is considered and the effect of void ratio on the unsaturated small strain shear modulus... 

    Correlation of shear wave velocity with liquefaction resistance for silty sand based on laboratory study

    , Article 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015: New Innovations and Sustainability, 9 November 2015 through 13 November 2015 ; 2015 , Pages 794-799 Akbari-Paydar, N ; Ahmadi, M. M ; Sharif University of Technology
    Asian Regional Conference on Soil Mechanics and Geotechnical Engineering  2015
    Abstract
    Several methods have been used for the evaluation of liquefaction potential, among which the simplified method is mostly used. In this method, which is mainly based on standard penetration test (SPT), cone penetration test (CPT) and shear wave velocity (Vs) measurement, a boundary curve is provided to separate the liquefiable and non-liquefiable soil zones. Vs measurement is a good alternative method of penetration-based methods (SPT and CPT). This is especially true in micro-zonation of liquefaction potential. Although relatively large studies have been carried out to establish the correlation between Vs and liquefaction resistance for sands; there are uncertainties about the effects of... 

    A complete treatment of thermo-mechanical ale analysis; Part 2: Finite element equations and applications

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 34, Issue 2 , 2010 , Pages 149-165 ; 10286284 (ISSN) Tadi Beni, Y ; Movahhedy, M. R ; Farrahi, G. H ; Sharif University of Technology
    2010
    Abstract
    In the first part of this paper series, a complete formulation for fully coupled ALE analysis of large deformation solid mechanic problems was developed. The formulation incorporated inertial, rate and thermal effects, and the treatment of rate and temperature dependent constitutive equations were presented. In this part, the ALE equations are discretized to form finite element equations. An algorithm for the treatment of mesh motion is described and example problems are presented to demonstrate the capability of the proposed formulation  

    Strength parameters of asphalt concrete used in core zone of earth dams

    , Article Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering ; Volume 2 , 2009 , Pages 1558-1561 ; 9781607500315 (ISBN) Jafarzadeh, F ; Yousefpour, N ; Sharif University of Technology
    Abstract
    Strength parameters of asphalt concrete used in earth fill dams' core were studied by conducting cyclic and monotonic triaxial tests on asphalt concrete samples. Results obtained from more than 120 cyclic tests showed that asphalt concrete behaves properly under cyclic loading and specimens stay intact after applying 5000 cycles. Results of monotonic and post-cyclic loading proved that strength parameters of asphalt concrete samples does not change significantly after being subjected to seismic loads. © 2009 IOS Press  

    Implementation of image processing technique for measuring membrane penetration in triaxial testing on gravelly soils

    , Article 19th International Conference on Soil Mechanics and Geotechnical Engineering, ICSMGE 2017, 17 September 2017 through 22 September 2017 ; 2017 , Pages 381-384 Haeri, S. M ; Shahcheraghi, S. A ; Sharif University of Technology
    19th ICSMGE Secretariat  2017
    Abstract
    The volume change that occurs due to membrane penetration into peripheral voids of gravelly specimens during hydrostatic compression test in a conventional triaxial apparatus is studied by performing a set of hydrostatic compression tests on gravelly specimens with different initial relative densities. During the isotropic loading on the specimens, the total volume changes of the specimens were determined by measuring the amount of water seeping out of the specimens at different loading steps. Image processing technique was implemented simultaneously to determine the skeletal volume changes of the specimens. In this regard specimens were compressed to isotopic pressures from 10 to 500 kPa... 

    Geotechnical characterization and collapsibility of a natural dispersive loess

    , Article Engineering Geology ; Volume 250 , 2019 , Pages 89-100 ; 00137952 (ISSN) Sadeghi, H ; Kiani, M ; Sadeghi, M ; Jafarzadeh, F ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    During preliminary investigation phase of the national Chabahar-Zahedan railway line, serious geotechnical problems including non-uniform settlements, tensile cracks, and local collapse were reported in parts of the path near the coastline. A follow-up field investigation revealed that the in-situ soil at construction site has a metastable structure being sensitive to saturation and loading. Therefore, a comprehensive series of physical, chemical, electro-chemical, and geotechnical tests were conducted to classify and characterize the soil properties and behavior in its natural state. The natural soil was classified as a clayey loess with moderately dispersive to dispersive characteristics.... 

    Evaluation of the effects of principal stress direction on shear modulus of unsaturated sand using hollow cylinder apparatus

    , Article 7th International Conference on Earthquake Geotechnical Engineering, ICEGE 2019, 17 January 2019 through 20 January 2019 ; 2019 , Pages 3102-3108 ; 9780367143282 (ISBN) Jafarzadeh, F ; Ahmadi Givi, F ; Ahmadinezhad, A ; Silvestri F ; Moraci N ; Sharif University of Technology
    CRC Press/Balkema  2019
    Abstract
    Determination of soil shear modulus is one of the most controversial topics in unsaturated soil dynamics. Due to the fact that soils have an anisotropic response, the shear strength and stiffness of geological materials are greatly dependent on the principal stress direction and the intermediate principal stress. In this study, the effects of principal stress direction on shear modulus of unsaturated medium-dense sand have been investigated using cyclic hollow cylinder apparatus. Three series of stress-controlled cyclic tests with different fixed principal stress directions were carried out on the sand sample under different values of suction. Results reveal that shear modulus of unsaturated... 

    Evaluation of the effects of principal stress direction on shear modulus of unsaturated sand using hollow cylinder apparatus

    , Article 7th International Conference on Earthquake Geotechnical Engineering, ICEGE 2019, 17 January 2019 through 20 January 2019 ; Pages 3102-3108 , 2019 ; 9780367143282 (ISBN) Jafarzadeh, F ; Ahmadi Givi, F ; Ahmadinezhad, A ; Silvestri F ; Moraci N ; Sharif University of Technology
    CRC Press/Balkema  2019
    Abstract
    Determination of soil shear modulus is one of the most controversial topics in unsaturated soil dynamics. Due to the fact that soils have an anisotropic response, the shear strength and stiffness of geological materials are greatly dependent on the principal stress direction and the intermediate principal stress. In this study, the effects of principal stress direction on shear modulus of unsaturated medium-dense sand have been investigated using cyclic hollow cylinder apparatus. Three series of stress-controlled cyclic tests with different fixed principal stress directions were carried out on the sand sample under different values of suction. Results reveal that shear modulus of unsaturated...