Loading...
Search for: soft-tissue
0.009 seconds
Total 51 records

    Modeling of Spleen Tissue for Analyzing it Sinteraction with Alaparoscopic Surgery Instrument

    , M.Sc. Thesis Sharif University of Technology Tirehdast, Mojdeh (Author) ; Farahmand, Farzam (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    In the recent years, medical application of robots has been widely developed. Transforming open surgeries to close surgeries has distinguished this novel method to decrease limitations in this type of surgery. In this procedure, two or three small incisions on the skin are used as guides for robotic instruments to enter the cavity, to improve the surgeon’s manipulation and function in surgery. One of challenges in this field is surgeon’s training for laparoscopic surgery. Surgical simulators are used to solve this problem. Lack of instrument for large organs gripping and tissue palpation loss are existing difficulties in available surgical simulators in such a manner that surgeons has no... 

    Modeling of damage in soft biological tissues

    , Article Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling ; 2017 , Pages 101-123 ; 9780128040607 (ISBN); 9780128040096 (ISBN) Holzapfel, G. A ; Fereidoonnezhad, B ; Sharif University of Technology
    Elsevier Inc  2017
    Abstract
    The mechanical responses of biological tissues are well characterized by hyperelastic or viscoelastic models within the physiological loading range. However, during supra-physiological mechanical loading, as occurs during interventional procedures such as balloon angioplasty and arterial clamping, damage may occur in the tissue. The continuum and computational treatments of damage in soft biological tissues have attracted considerable attention over the recent years. In this chapter, we review the state of the art of this challenging area. We summarize and critically discuss various damage models, which are based on continuum damage mechanics, the theory of pseudo-elasticity, and the... 

    Analysis of Acoustic Wave Interaction in Soft Tissues (Penetration, Reflection and Dispersion)

    , M.Sc. Thesis Sharif University of Technology Hashemi, Saeed (Author) ; Ahmadiyan, Mohammad Taghi (Supervisor) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    The application of acoustic waves as a diagnostic tool in medicine is highly regarded. Because of the mechanical and Noninvasive nature of this waves when penetrate in the body will not have any adverse effects on the body. Thus development and operation of these waves is growing every day. If abnormal changes in soft tissues (such as tumors inside the body) is created, by the reflected sound waves easily recognizable although it is experimental, and a little scientific studies have been conducted on the contrast of soft tissue and acoustic waves. Soft tissues of the human body Because of the asymmetric structure has a non-uniform physical and mechanical properties in different directions,... 

    Multi-parameter sensitivity analysis for guided needle insertion through soft tissue

    , Article Proceedings of 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences, IECBES 2010, 30 November 2010 through 2 December 2010, Kuala Lumpur ; 2010 , Pages 97-100 ; 9781424476008 (ISBN) Maghsoudi, A ; Jahed, M ; Sharif University of Technology
    2010
    Abstract
    Soft tissue needle insertion characterization has been a focus of many medical and biomedical recent studies. In this study the constrained prostate soft tissue deformation through a finite element model is evaluated. The study considers a sensitivity analysis of the target reaching error with respect to the mechanical, insertion and anatomical parameters in presence of the kinematics constraint on the tissue. The needle insertion into the soft tissue is simulated using the proposed Finite Element Method (FEM). Based on acquired results, the insertion of needle induces a considerable rotation of the prostate tissue due to its specific kinematics and support structure. Such rotation can... 

    Model Based Control of a Laparoscopic Instrument for Safe and Effective Grasping of Spleen Tissue

    , M.Sc. Thesis Sharif University of Technology Abdi, Elahe (Author) ; Farahmand, Farzam (Supervisor) ; Durali, Mohammad (Supervisor)
    Abstract
    In the present dissertation model based grasping of soft tissue with the laparoscopic gripper, tissue deformation under the applied load and control of the tissue-instrument interaction have been studied. As the first step a cantilevered beam under bending and tension has been modeled statically and dynamically using the meshless EFG based method. Results show that an increase in the number of nodes at the displacement boundary and the area of force insertion improves the accuracy of the predicted displacement in the model compared to the analytical solution. In the second step the model is developed for a hemisphere under vertical and lateral compression. Comparison of the deformation of... 

    Dynamic Simulation of Heart Mitral Valve

    , M.Sc. Thesis Sharif University of Technology Darvishan, Majid (Author) ; Zohoor, Hassan (Supervisor) ; Sohrabpoor, Saeeid (Supervisor)
    Abstract
    Two methods for simulating material behavior of heart mitral valve leaflet tissue are developed in this thesis, in the finite element setting. First, a mixed pressure-displacement formulation is used to implement the constitutive material behavior with general 3D elements. Second, a shell is formulated that incorporates the 3D material behavior by use of a local plane stress iteration method. Both of these works are based on an existing invariant-based strain energy function that has been experimentally determined for the mitral valve leaflet tissue. Since this material is considered to be nearly incompressible, a mixed pressure-displacement (u/p) formulation is needed to apply the material... 

    Real Time Simulation of Grasping Procedure of Large Internal Organs during Laparoscopic Surgery

    , M.Sc. Thesis Sharif University of Technology Dehghani Ashkezari, Hossein (Author) ; Farahmand, Farzam (Supervisor) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    Surgical simulation systems facilitate a safe and efficient training process by providing a virtual environment in which the trainee can repeat the surgical procedure unlimitedly at different situations. The present study attempted to provide a real time simulation for the grasping procedure of a large internal organ during laparoscopic surgery. A mass-spring-damper model was employed to simulate the nonlinear viscoelastic large deformations of spleen tissue interacting with a triple-jaw large organ grasper. A novel collision detection algorithm was designed and implemented to determine the contact points between the tissue and the grasper jaws. The boundary conditions imposed at the contact... 

    Real-time Simulation of Soft Tissue in Virtual Environments Using a Haptic Interface

    , M.Sc. Thesis Sharif University of Technology Heydari Kamarroudi, Mehdi (Author) ; Meghdari, Ali (Supervisor)
    Abstract
    Surgical simulators present a safe, practical, and ethical method for surgical training. In order to enhance realism and provide the user with an immersive training experience, simulators should have the capability to provide haptic feedback to the user. Accurate modeling of the interaction between surgical instruments and organs has been recognized as a key requirement in the development surgical simulators. Researchers have attempted to model tool-tissue interactions in a wide variety of ways, which can be broadly classified as (1) continuum mechanics-based,(2) discrete elements-based methods.
    This thesis presents an improved model of static Long Elements Method (LEM), a new method... 

    Simulation of Interactions Between Large Soft Tissues and a Laparoscopic Grasper Using a Mesh-Less Model and Its Experimental Validation

    , M.Sc. Thesis Sharif University of Technology Saghaee Nooshabadi, Zeinab (Author) ; Farahmand, Farzam (Supervisor) ; Narimani, Roya (Supervisor)
    Abstract
    Realistic simulation of tool-tissue interactions can help developing more effective surgical training systems and simulators. In this study we used finite element and meshless modeling approaches to simulate the grasping procedure of a large intra-abdominal organ, i.e., kidney, during laparoscopic surgery. Results indicated that the accuracy of meshless method was comparable with that of the finite element, with the RMS errors in the range of 0.8 to 3.4 mm in different directions. The computational cost of the meshless method however, was much less than that of the finite element model. In order to verify the model, a silicon sample was used with the ship kidney geometry. For determination... 

    Characterization of Tissue Structure of Natural Scaffolds Made of Rat Kidney

    , M.Sc. Thesis Sharif University of Technology Rezaiepour, Yashar (Author) ; Asgari, Sirius (Supervisor) ; Kajbafzadeh, Abdolmohammad (Supervisor)
    Abstract
    Recently, the deficiency of methods like organ donation and medicine made tissue engineering a prospective method in regeneration of tissues. Despite all of its advantageous like any other method, it has its own weak points. Its major disadvantage is the probability of rejection by the host body. Using proper material and controlling synthesis reactions by researchers decreased the rejection of synthetic scaffolds. But in the case of natural scaffolds due to the range of properties, many tests should be applied on the scaffold prior to implantation in order to evaluate functionality in body. In this research, SDS and TritonX100 has been used to decellulize kidney. Then using uniaxial... 

    Design and Manufacturing of Water Jet Apparatus for Cutting Soft Tissue and Interaction Analysis

    , M.Sc. Thesis Sharif University of Technology Vatani, Pouyan (Author) ; Ahmadian, Mohammad Taghi (Supervisor) ; Assempour, Ahmad (Supervisor)
    Abstract
    Cancer is one of the deadliest diseases of the modern era and accounts for 13% of all deaths in humans. Most cancers and lesions in the human body are related to soft tissue. Many soft-tissue cancers and lesions occur in sensitive areas of the body, such as the brain, pituitary, and intestine. The pituitary gland is located in the human head and near the optic nerves. Surgery in a typical way can result in risks such as heat loss of the optic nerve or injuries to healthy tissues due to the sharpness of the surgery tool. One of the alternatives to conventional surgery is water jet surgery. This method minimizes the risks of human error. In the present study, a water jet machine was designed... 

    Traumatic brain injury caused by +Gz acceleration

    , Article ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 21 August 2016 through 24 August 2016 ; Volume 3 , 2016 ; 9780791850138 (ISBN) Shafiee, A ; Ahmadian, M.T ; Hoviattalab, M ; Computers and Information in Engineering Division; Design Engineering Division ; Sharif University of Technolgy
    American Society of Mechanical Engineers (ASME) 
    Abstract
    Traumatic brain injury (TBI) has long been known as one of the most anonymous reasons for death around the world. This phenomenon has been under study for many years and yet it remains a question due to physiological, geometrical and computational complexity. Although the modeling facilities for soft tissue have improved, the precise CT-imaging of human head has revealed novel details of the brain, skull and meninges. In this study a 3D human head including the brain, skull, and meninges is modeled using CT-scan and MRI data of a 30-year old human. This model is named "Sharif University of Technology Head Trauma Model (SUTHTM)". By validating SUTHTM, the model is then used to study the... 

    Design and implementation of series elastic actuators for a haptic laparoscopic device

    , Article Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, 2 September 2009 through 6 September 2009, Minneapolis, MN ; 2009 , Pages 6054-6057 ; 9781424432967 (ISBN) Basafa, E ; Sheikholeslami, M ; Mirbagheri, A ; Farahmand, F ; Vossoughi, G. R ; Sharif University of Technology
    Abstract
    The design of a laparoscopic haptic device based on a 4-DOFs mechanism and Series Elastic Actuators (SEA) is described and the results of the theoretical and experimental examinations are presented. With a sufficient bandwidth and low impedance, the system provided a stable interaction with soft tissues, e.g., human liver, in virtual environments. ©2009 IEEE  

    A 3-legged parallel robot for long bone fracture alignment

    , Article ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2017, 6 August 2017 through 9 August 2017 ; Volume 3 , 2017 ; 9780791858158 (ISBN) Abedinnasab, M. H ; Farahmand, F ; Gallardo Alvarado, J ; Computers and Information in Engineering Division; Design Engineering Division ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2017
    Abstract
    The reduction of long bone fractures is traditionally an invasive procedure with drawbacks of intense force, soft tissue damage, and, both, rotational and longitudinal malalignment. To combat these drawbacks, we applied a novel, wide open, threelegged, 6-DOF parallel robot, to the current surgical procedure. This platform will balance the accuracy, payload, and workspace for the surgeon, resulting in more efficient, successful surgeries. The experimental tests on a phantom reveal that the mechanism is well capable of applying the desired reduction steps against the large muscular payloads with high accuracy. © 2017 ASME  

    Real-time simulation of the nonlinear visco-elastic deformations of soft tissues

    , Article International Journal of Computer Assisted Radiology and Surgery ; Volume 6, Issue 3 , 2011 , Pages 297-307 ; 18616410 (ISSN) Basafa, E ; Farahmand, F ; Sharif University of Technology
    Abstract
    Purpose: Mass-spring-damper (MSD) models are often used for real-time surgery simulation due to their fast response and fairly realistic deformation replication. An improved real time simulation model of soft tissue deformation due to a laparoscopic surgical indenter was developed and tested. Method: The mechanical realization of conventional MSD models was improved using nonlinear springs and nodal dampers, while their high computational efficiency was maintained using an adapted implicit integration algorithm. New practical algorithms for model parameter tuning, collision detection, and simulation were incorporated. Results: The model was able to replicate complex biological soft tissue... 

    Rate-dependent behavior of connective tissue through a micromechanics-based hyper viscoelastic model

    , Article International Journal of Engineering Science ; Volume 121 , 2017 , Pages 91-107 ; 00207225 (ISSN) Fallah, A ; Ahmadian, M. T ; Mohammadi Aghdam, M ; Sharif University of Technology
    Abstract
    In this paper, a micromechanical study on rate-dependent behavior of connective tissues is performed. To this end, a hyper viscoelastic constitutive model consisting a hyperelastic part for modeling equilibrium response of tissues and a viscous part using a hereditary integral is proposed to capture the time-dependent behavior of the tissues. With regard to the hierarchical structure of the tissue, strain energy function are developed for modeling elastic response of the tissue constituents i.e. collagen fibers and ground matrix. The rate-dependency is incorporated into the model using a viscous element with rate-dependent relaxation time. The proposed constitutive model is implemented into... 

    Adaptive 2D-path optimization of steerable bevel-tip needles in uncertain model of brain tissue

    , Article 2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009, Los Angeles, CA, 31 March 2009 through 2 April 2009 ; Volume 5 , 2009 , Pages 254-260 ; 9780769535074 (ISBN) Sadati, N ; Torabi, M ; Sharif University of Technology
    2009
    Abstract
    Although there are many works in which path planning of robots is studied, but path planning of the bevel-tip needles with highly flexible body is different and difficult due to unique properties of soft tissues. Real soft tissues are nonhomogeneously elastic and uncertainly deformable and hence, during needle motions the planned path changes unknowingly. In this paper, a novel adaptive path planning of bevel-tip needles inside the uncertain brain tissue is presented. The proposed approach is based on minimization of a Lyapanov energy function used as the cost function which consists of 6 partial costs: path length, number of changes in bevel direction, tissue deformation, horizontal and... 

    Design, Fabrication and Control of a Force-Feedback-Enabled Robotic Instrument for Minimally Invasive Surgeries

    , M.Sc. Thesis Sharif University of Technology Khadem, Mohsen (Author) ; Farahmand, Farzam (Supervisor) ; Behzadipour, Saeed (Co-Advisor)
    Abstract
    Aside from many advantages of minimally invasive surgery, it has some drawbacks. Surgeons` loss of dexterity dexterity, lack of force feedback and the consequent reduced sensation of forces are some of these drawbacks. Also, surgeons` ergonomically inappropriate posture gets him fatigued, causing hand tremor which is furthermore magnified by the long instruments. Robotic surgery systems have overcome some of minimally invasive surgeries limitations. But still some drawbacks such as high cost of maintenance or lack of haptic force feedback have impeded their widespread application. The high cost of maintenance is mostly caused by instrument changing and sterilization.The main goal of this... 

    Investigation of the Effect of High Accelerations on Human Cardiac Function

    , M.Sc. Thesis Sharif University of Technology Jamshidi, Masoud (Author) ; Ahmadian, Mohammad Taghi (Supervisor) ; Meghdari, Ali (Co-Advisor)
    Abstract
    When the human body is subjected to high accelerations, cardiac function and blood supply to the body can be changed. Due to the complex geometrical and mechanical properties of heart, finite element method is useful way for analysis of response of this structure under different load types. Modeling heart using finite element method requires mechanical and geometrical properties of heart. Soft tissues modeling, such as heart muscle using finite element method is one of the most challenging issues in field of biomechanics. In this thesis, the mechanical properties of heart are obtained by performing experimental compression tests on samples of fresh bovine heart. Using obtained experimental... 

    Dynamics and Control of Needle Movement in Percutaneous Interaction with Prostate Tissue

    , Ph.D. Dissertation Sharif University of Technology Maghsoudi, Arash (Author) ; Jahed, Mehran (Supervisor)
    Abstract
    In many modern medical procedures, needle insertion is an inevitable part of the diagnosis or treatment protocols. The accuracy of the needle insertion is adversely affected by a number of factors. A needle, frequently assumed to be flexible, is inserted into a soft tissue and induces complex mechanical interactions that may result in considerable uncertainties. Tissue intrinsic characteristics as well as its deformation and rotation may cause dramatic complexities. This work considers the needle movement inside the tissue from the dynamics and control point of view. The proposed approach can be regarded as an initial step towards automation of needle insertion procedures; it can also be...