Loading...
Search for: slip-flow
0.009 seconds
Total 29 records

    Gaseous slip flow mixed convection in vertical microducts of constant but arbitrary geometry

    , Article Journal of Thermophysics and Heat Transfer ; Volume 28, Issue 4 , 1 October , 2014 , Pages 771-784 ; ISSN: 08878722 Sadeghi, M ; Sadeghi A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Consideration is given to the buoyancy effects on fully developed gaseous slip flow in vertical microducts of constant but arbitrary geometry. The thermal boundary condition is assumed to be the constant wall heat flux of the first kind, H1. The rarefaction effects are treated using the first-order slip velocity and temperature jump boundary conditions. The method of solution being considered, in which the governing equations in cylindrical coordinates and three of the boundary conditions are exactly satisfied, is mainly analytical. The remaining slip boundary conditions on the duct wall are applied to the solution through the least-squares matching method. As an application of the method,... 

    Numerical Simulation of Turbulent Flow Heat Transfer in the Entrance Region of Microchannels

    , M.Sc. Thesis Sharif University of Technology Sadeghi, Arman (Author) ; Nouri Borujerdi, Ali (Supervisor)
    Abstract
    In this thesis the steady state convective heat transfer for turbulent, two-dimensional, incompressible gas flow in a circular microchannel under slip flow and temperature jump conditions is numerically investigated by means of finite volume scheme. The low Reynolds number k-ε turbulence model is employed using a new boundary condition for turbulent kinetic energy at solid surface. To calculate variables at control volume surfaces in the axial direction upwind differencing scheme and in the radial direction central differencing scheme are used. Rhie-Chow interpolation technique is used to prevent pressure field oscillations. The set of discrete equations are solved using SIMPLE Algorithm. In... 

    Laminar forced convection in annular microchannels with slip flow regime

    , Article 7th International Conference on Nanochannels, Microchannels, and Minichannels, 22 June 2009 through 24 June 2009 ; Issue PART A , 2009 , Pages 353-361 ; 9780791843499 (ISBN) Sadeghi, A ; Asgarshamsi, A. H ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Fluid flow and heat transfer at microscale have attracted an important research interest in recent years due to the rapid development of microelectromechanical systems (MEMS). Fluid flow in microdevices has some characteristics which one of them is rarefaction effect related with gas flow. In this research, hydrodynamically and thermally fully developed laminar rarefied gas flow in annular microducts is studied using slip flow boundary conditions. Two different cases of the thermal boundary conditions are considered, namely: uniform temperature at the outer wall and adiabatic inner wall (Case A) and uniform temperature at the inner wall and adiabatic outer wall (Case B). Using the previously... 

    Simulation of Two-phase Flow through Rock Fractures using Multi-block Lattice Boltzmann Method

    , Ph.D. Dissertation Sharif University of Technology Foroughi, Sajad (Author) ; Pishvaie, Mahmoud Reza (Supervisor) ; Jamshidi, Saeid (Supervisor)
    Abstract
    Determining the parameters of the porous media and fractures in order to properly understand the processes governing these environments is very important. Traditionally, these parameters are determined in the laboratory. In recent years, with the advancement of computational capabilities, numerical methods have been considered to determine the parameters of the porous media. In the last few decades, the lattice Boltzmann method has been considered by the researchers as a class of computational fluid dynamic methods for simulating fluid flow. The advantages of the lattice Boltzmann method include simplicity in applying to complex media and the ability to simulate different phenomena. In this... 

    A ¬High Order Accurate Numerical Solution of Incompressible Slip Flow in Microchannels with Heat Transfer by Using Artificial Compressibility Method

    , M.Sc. Thesis Sharif University of Technology Mohafez, Mir Hamed (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, a high-order accurate numerical solution of steady incompressible slip flow and heat transfer in 2D microchannels is presented. The numerical method used is an alternating direction implicit operator scheme which is efficiently implemented to solve the incompressible Navier-Stokes equations in the primitive variables formulation using the artificial compressibility method. To stabilize the numerical solution, numerical filters are used. The present methodology considers the solution of the Navier-Stokes equations with¬ employing different slip boundary condition¬¬ (Maxwell,¬ ¬¬Hyperbolic tangent function of Knudsen number¬ and Beskok slip models)¬ ¬¬on the wall to model... 

    Simulation of two-Dimensional Supersonic Flow in Slip Regime in Microchannel with Finite Difference Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Barootiha, Hamed (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, the simulation of two-dimensional supersonic flows through microchannels in slip flow regime is performed using a lattice Boltzmann model (LBM). Traditional LB models have been used to simulate incompressible fluid flows and there are not suitable for modeling compressible or thermo-fluid flows. Herein, a recently developed LB model, namely, the finite difference lattice Boltzmann method (FDLBM), is employed to simulate compressible flows with embedded shocks. In this model, one can select particle velocities independently from the lattice configuration, and therefore, a correct and numerically stable multispeed thermal model by adopting more isotropic particle velocities can... 

    Simulation of Flow and Mass Transfer in Microfluidic Systems of Human Body

    , Ph.D. Dissertation Sharif University of Technology Saadatmand, Maryam (Author) ; Abd Khodaei, Mohammad Jafar (Supervisor) ; Farhadi, Fathollah (Supervisor) ; Pishvaie, Mahmoud Reza (Supervisor)
    Abstract
    The effects of gravity and inertia dominate our experiences of the physical world. But as systems are reduced in size, phenomena such as diffusion, surface tension and viscosity become ever more important; at the microscale they can dominate and result in a world that operates very differently from the macroscopic world. Kidney is one of the vital organs in which fluid and mass transfer occur between blood flow in microvessels and urine in microchannels called nephron. The present work is aimed at applying microchannel theory to study renal system. First, a n efficient numerical orthogonal collocation method has been employed to solve the steady-state formulation of electrolyte transport in... 

    Gaseous Slip Flow Mixed Convection in Vertical Microducts of Constant but Arbitrary Geometry

    , M.Sc. Thesis Sharif University of Technology Sadeghi, Morteza (Author) ; Saidi, Mohammad Hassan (Supervisor)
    Abstract
    In the study of heat transfer in micro-channels, free and force convections are two limit cases and these two methods of heat transfer are combined together generally, so to achieve the most accurate informations about the flow field they should be considered in combination. In the first part of the thesis the fully developed slip flow mixed convection in vertical micro-ducts of arbitrary shapes is investigated.Uniform axial heat flux and uniform peripheral wall temperature (H1) is considered. The method considered is analytical-numerical in which the governing equations and three of the boundary conditions are exactly satisfied but the remaining slip boundary condition on the duct wall... 

    Entropy generation in thermally developing laminar forced convection through a slit microchannel

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010, 1 August 2010 through 5 August 2010, Montreal, QC ; Issue PARTS A AND B , 2010 , Pages 515-526 ; 9780791854501 (ISBN) Sadeghi, A ; Baghani, M ; Saidi, M. H ; Sharif University of Technology
    2010
    Abstract
    The issue of entropy generation in laminar forced convection of a Newtonian fluid through a slit microchannel is analytically investigated by taking the viscous dissipation effect, the slip velocity and the temperature jump at the wall into account. Flow is considered to be hydrodynamically fully developed but thermally developing. The energy equation is solved by means of integral transform. The results demonstrate that to increase Knudsen number is to decrease entropy generation, while the effect of increasing values of Brinkman number and the group parameter is to increase entropy generation. Also it is disclosed that in the thermal entrance region the average entropy generation number... 

    Second law analysis for extended graetz problem including viscous dissipation in microtubes

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2010 Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, Montreal, QC, 1 August 2010 through 5 August 2010 ; Issue PARTS A AND B , 2010 , Pages 503-514 ; 9780791854501 (ISBN) Sadeghi, A ; Baghani, M ; Saidi, M. H ; Fluids Engineering Division ; Sharif University of Technology
    2010
    Abstract
    The entropy generation rate has become a useful tool for evaluating the intrinsic irreversibilities associated with a given process or device. This work presents an analytical solution for entropy generation in hydrodynamically fully developed thermally developing laminar flow in a microtube. The rarefaction effects as well as viscous heating effects are taken into consideration, but axial conduction is neglected. Using fully developed velocity profile, the energy equation is solved by means of integral transform. The solution is validated by comparing the local Nusselt numbers against existing literature data. From the results it is realized that the entropy generation decreases as Knudsen... 

    Second law analysis of slip flow forced convection through a parallel plate microchannel

    , Article Nanoscale and Microscale Thermophysical Engineering ; Volume 14, Issue 4 , 2010 , Pages 209-228 ; 15567265 (ISSN) Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    In the present work, the second law of thermodynamics analysis has been carried out for steady-state fully developed laminar gas flow in a parallel plate microchannel with asymmetrically heated walls. The rarefaction effects as well as viscous heating effects are taken into consideration. Closed-form expressions are obtained for velocity and temperature distributions and entropy generation rates. The results demonstrate that increasing values of the wall heat fluxes ratio result in greater entropy generation for positive Brinkman numbers, whereas the opposite is true for negative values of Brinkman. However, the effect of the wall heat fluxes ratio on entropy generation becomes insignificant... 

    Simulation of rarefied micro to nano gas flows using improved slip flow models

    , Article 37th AIAA Fluid Dynamics Conference, Miami, FL, 25 June 2007 through 28 June 2007 ; Volume 1 , 2007 , Pages 576-583 ; 1563478978 (ISBN); 9781563478970 (ISBN) Darbandi, M ; Rikhtegar, F ; Schneider, G. E ; Sharif University of Technology
    2007
    Abstract
    If the hydrodynamic diameter of a channel is comparable with the mean free path of the gas molecules moving inside the channel, the fluid can no longer be considered to be in thermodynamic equilibrium and a variety of non-continuum or rarefaction effects can occur. To avoid enormous complexity and extensive numerical cost encountered in modeling of nonlinear Boltzmann equations, the Navier-Stokes equations can be solved considering the concepts of slip flow regime and applying slip velocity boundary conditions at the solid walls. The high-order slip models can, in some cases, extend the range of applicability of the Navier-Stokes equations beyond Kn = 0.1, where the accuracy of first-order... 

    Effects of corrugated roughness on gaseous slip flow forced convection in microtubes

    , Article Journal of Thermophysics and Heat Transfer ; Volume 25, Issue 2 , 2011 , Pages 262-271 ; 08878722 (ISSN) Sadeghi, A ; Salarieh, H ; Saidi, M. H ; Mozafari, A. A ; Sharif University of Technology
    Abstract
    Because of technological restrictions, it is actually impossible to fabricate smooth microchannels. Therefore, exploring the roughness effects on the flow characteristics at microscale is of great importance for scientific communities. The present investigation deals with the effects of corrugated roughness on the fully developed slip flow forced convection in micropipes. The governing equations subject to first-order slip boundary conditions are solved by means of the straightforward perturbation method. Closed-form expressions are obtained for the dimensionless velocity and temperature distributions, for the friction coefficient and pressure drop, and finally for the Nusselt number. The... 

    Simulation of Compressible Rarefied Gas Flow using High-Order WENO Finite-difference Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Zamani Ashtiani, Shaghayegh (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    The goal of the present study is to simulate the compressible rarefied gas flow by using a high-order finite-difference lattice Boltzmann method. Here, a weighted essentially non-oscillatory lattice Boltzmann method (WENO-LBM) is applied for the solution of the compressible form of the LB equation with the Kataoka-Tsutahara model. The solution procedure is based on the discretization of the convection terms of the LB equation using the fifth-order finite-difference WENO scheme and the temporal term using the third-order explicit total variation diminishing Runge-Kutta scheme for both the continuum and rarefied gas flows. The treatment of implementing the no-slip and slip boundary conditions... 

    Gaseous slip flow mixed convection in vertical microducts with constant axial energy input

    , Article Journal of Heat Transfer ; Vol. 136, issue. 3 , 2014 ; ISSN: 00221481 Sadeghi, A ; Baghani, M ; Saidi, M. H ; Sharif University of Technology
    Abstract
    The present investigation is devoted to the fully developed slip flow mixed convection in vertical microducts of two different cross sections, namely, polygon, with circle as a limiting case, and rectangle. The two axially constant heat flux boundary conditions of H1 and H2 are considered in the analysis. The velocity and temperature discontinuities at the boundary are incorporated into the solutions using the first-order slip boundary conditions. The method considered is mainly analytical in which the governing equations in cylindrical coordinates along with the symmetry conditions and finiteness of the flow parameter at the origin are exactly satisfied. The first-order slip boundary... 

    Buoyancy effects on gaseous slip flow in a vertical rectangular microchannel

    , Article Microfluidics and Nanofluidics ; Vol. 16, issue. 1-2 , 2014 , pp. 207-224 ; ISSN: 16134982 Sadeghi, M ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Consideration is given to the buoyancy effects on the fully developed gaseous slip flow in a vertical rectangular microduct. Two different cases of the thermal boundary conditions are considered, namely uniform temperature at two facing duct walls with different temperatures and adiabatic other walls (case A) and uniform heat flux at two walls and uniform temperature at other walls (case B). The rarefaction effects are treated using the firstorder slip boundary conditions. By means of finite Fourier transform method, analytical solutions are obtained for the velocity and temperature distributions as well as the Poiseuille number. Furthermore, the threshold value of the mixed convection... 

    Gaseous slip flow forced convection in microducts of arbitrary but constant cross section

    , Article Nanoscale and Microscale Thermophysical Engineering ; Vol. 18, issue. 4 , 2014 , p. 354-372 Baghani, M ; Sadeghi, A ; Sharif University of Technology
    Abstract
    This is a theoretical study that extends a classical method of treating the convection heat transfer in complex geometries to gaseous slip flow forced convection in microchannels with H1 thermal boundary condition. Through this line, the momentum and energy equations in cylindrical coordinates are made dimensionless. Afterward, solutions are presented that exactly satisfy the dimensionless differential equations along with the symmetry condition and finiteness of the flow parameter at the origin. The first-order slip boundary conditions are then applied to the solution utilizing the least squares matching method. Though the method is general enough to be applied to almost any arbitrary cross... 

    Gaseous slip flow forced convection through ordered microcylinders

    , Article Microfluidics and Nanofluidics ; Volume 15, Issue 1 , 2013 , Pages 73-85 ; 16134982 (ISSN) Sadeghi, A ; Baghani, M ; Saidi, M. H ; Sharif University of Technology
    2013
    Abstract
    This is a theoretical study dealing with longitudinal gaseous slip flow forced convection between a periodic bunch of microcylinders arranged in regular array. The selected geometry has applications in microscale pin fin heat sinks used for cooling of microchips. The flow is considered to be hydrodynamically and thermally fully developed. The two axially constant heat flux boundary conditions of H1 and H2 are considered in the analysis. The velocity and temperature discontinuities at the boundary are incorporated into the solutions using the first order slip boundary conditions. The method considered is mainly analytical in which the governing equations and three of the boundary conditions... 

    The study of microfilter performance in different environments using DSMC

    , Article ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011, 19 June 2011 through 22 June 2011 ; Volume 1 , June , 2011 , Pages 289-294 ; 9780791844632 (ISBN) Darbandi, M ; Karchani, A ; Khaledi Alidusti, R ; Schneider, G. E ; Sharif University of Technology
    2011
    Abstract
    Microfilters are commonly used to block undesirable particles in the fluid flows and to control the flow patterns in MEMS. The main purpose of this study is to understand the effect of gas type on density, pressure, Mach number, and velocity distributions of fluid flows through a microfilter. The Knudsen number is the slip flow regime passing through the microfilter. We use direct simulation Monte Carlo (DSMC) method to simulate the flow of nitrogen, helium, oxygen, air and methane passing through a specific microfilter. The geometry of microfilter is unique in all cases. Our results confirm that every gas performs a different performance passing through a specific microfilter, and that the... 

    High-order accurate numerical solution of incompressible slip flow and heat transfer in microchannels

    , Article Lecture Notes in Computational Science and Engineering, 22 June 2009 through 26 June 2009 ; Volume 76 LNCSE , June , 2011 , Pages 419-427 ; 14397358 (ISSN); 9783642153365 (ISBN) Hejranfar, K ; Mohafez, M. H ; Khajeh Saeed, A ; Sharif University of Technology
    2011
    Abstract
    A high-order accurate implicit operator scheme is used to solve steady incompressible slip flow and heat transfer in 2D microchannels. The present methodology considers the solution of the Navier-Stokes equations using the artificial compressibility method with employing the Maxwell and Smoluchowski boundary conditions to model the slip flow and temperature jump on the walls in microchannels. Since the slip and temperature jump boundary conditions contain the derivatives of the velocity and temperature profiles, using the compact method the boundary conditions can be easily and accurately implemented. The computations are performed for a 2D microchannel and a 2D backward facing step in the...