Loading...
Search for: sintered-samples
0.007 seconds

    Investigation on cristobalite crystallization in silica-based ceramic cores for investment casting

    , Article Journal of the European Ceramic Society ; Volume 33, Issue 15-16 , 2013 , Pages 3397-3402 ; 09552219 (ISSN) Kazemi, A ; Faghihi Sani, M. A ; Alizadeh, H. R ; Sharif University of Technology
    2013
    Abstract
    In this work, cristobalite crystallization and its effects on mechanical and chemical behaviour of injection moulded silica-based ceramic cores were investigated. In order to simulate casting process condition, the sintered samples at 1220 °C were also heated up to 1430 °C. Flexural strength test was carried out on both sintered and heat treated samples. Chemical resistance of the cores was evaluated by leaching the samples inside 43. wt% KOH solution at its boiling point. Phase evolution and microstructure were investigated by thermal analyses (DTA and DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical microscopy (OM). Results showed that cristobalite was... 

    Uneven shrinkage causes problems for cheaper hardmetal tooling

    , Article Metal Powder Report ; Volume 66, Issue 5 , 2011 , Pages 29-32 ; 00260657 (ISSN) Simchi, A ; Petzoldt, F ; Hartwig, T ; Veltl, G ; Sharif University of Technology
    2011
    Abstract
    Researchers in Germany and Iran have looked at methods of manufacturing wear parts using nanostructured hardmetal combined with a cheaper stainless steel component in pursuit of cost effectiveness. Nanostructured WC-10%Co-0.9%VC and 316L SS powders were used as starting materials. A polymer-wax binder composed of polyethylene copolymer-ethylene vinyl acetate, carnauba wax, paraffin and stearic acid was used to prepare the hardmetal feedstock in a laboratory kneader with z-mixing blades at a temperature of 120°C. The assembled PIM parts were sintered in a laboratory sintering furnace under nitrogen according to different sintering cycles in the temperature range of 1320-1360°C with a heating... 

    Microstructural characterization and enhanced hardness of nanostructured Ni3Ti– NiTi (B2) intermetallic alloy produced by mechanical alloying and fast microwave-assisted sintering process

    , Article Intermetallics ; Volume 131 , 2021 ; 09669795 (ISSN) Akbarpour, M. R ; Alipour, S ; Najafi, M ; Ebadzadeh, T ; Kim, H. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this paper, the rapid synthesis of nanostructured NiTi–Ni3Ti intermetallic alloy from titanium and nickel powders through mechanical alloying followed by microwave-assisted sintering process was investigated. The sintered samples at different temperatures exhibited major phases of NiTi– B2 and Ni3Ti, and minor phases of NiTi–B19′ and Ti2Ni. The density, porosity and microhardness of the sample varied based on the sintering temperature, in which the highest density and microhardness (~750 H V) were obtained at sintering temperature of 1100 °C. Based on the results of this research, the microwave-assisted sintering can be applied to fabricate Ni–Ti alloys with improved mechanical properties... 

    Microstructural characterization and enhanced hardness of nanostructured Ni3Ti– NiTi (B2) intermetallic alloy produced by mechanical alloying and fast microwave-assisted sintering process

    , Article Intermetallics ; Volume 131 , 2021 ; 09669795 (ISSN) Akbarpour, M. R ; Alipour, S ; Najafi, M ; Ebadzadeh, T ; Kim, H. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this paper, the rapid synthesis of nanostructured NiTi–Ni3Ti intermetallic alloy from titanium and nickel powders through mechanical alloying followed by microwave-assisted sintering process was investigated. The sintered samples at different temperatures exhibited major phases of NiTi– B2 and Ni3Ti, and minor phases of NiTi–B19′ and Ti2Ni. The density, porosity and microhardness of the sample varied based on the sintering temperature, in which the highest density and microhardness (~750 H V) were obtained at sintering temperature of 1100 °C. Based on the results of this research, the microwave-assisted sintering can be applied to fabricate Ni–Ti alloys with improved mechanical properties... 

    The effects of nano Mgo on physical and mechanical properties of Al 2O3-SiC composites

    , Article Journal of Ceramic Science and Technology ; Volume 3, Issue 1 , 2012 , Pages 29-34 ; 21909385 (ISSN) Nemati, A ; Surani, F ; Abdizadeh, H ; Baharvandi, H. R ; Sharif University of Technology
    2012
    Abstract
    In this research, the effects of nano-sized MgO in Al2O 3-SiC composites were investigated. The overall changes in the density and mechanical properties of sintered samples (hardness, bending strength and toughness) were evaluated. After mixing, drying and uniaxial compaction of the powders, they were first heat-treated at low temperature in an electric furnace to remove any residuals. They were then heat-treated at high temperature (1700 °C) inside a graphite furnace in argon atmosphere for sintering (at normal and high pressure). The content of MgO in the Al 2O3-10 vol% SiC composite was 0, 500, 1000, and 1500 ppm. Thefracture toughness(KIC)of sintered composite with 10... 

    Effect of cobalt replacement by nickel on functionally graded cemented carbonitrides

    , Article International Journal of Refractory Metals and Hard Materials ; Volume 30, Issue 1 , January , 2012 , Pages 42-47 ; 02634368 (ISSN) Mohammadpour, M ; Abachi, P ; Pourazarang, K ; Sharif University of Technology
    2012
    Abstract
    Functionally graded cemented carbonitrides (FGCCs) are applied in cutting tools industry. Indexable inserts made from mentioned alloys have superior cutting performance and tool life thanks the formation of a surface modified layer with enhanced properties as well as crater wear resistance. Cemented carbonitrides are made of hard carbide/nitride/carbonitride particles that have been embedded in a metallic binder. Excellent wetting ability of tungsten carbide with cobalt has made this metal the first choice as binder. However, cobalt has high cost and environmental pollution impacts. Substitution of cobalt with other metals has always been figured out. Some other metals that have been used as...