Loading...
Search for: short-range-ordering
0.006 seconds

    Topological and chemical short-range order and their correlation with glass form ability of Mg-Zn metallic glasses: A molecular dynamics study

    , Article Computational Materials Science ; Volume 180 , 2020 Foroughi, A ; Tavakoli, R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Mg-based metallic glasses are promising materials for biodegradable implants. Understanding atomistic mechanism behind glass formation in these glasses plays a critical role in developing them for future applications. In the present work, we perform a set of molecular dynamics simulations to study structural origin behind glass form ability of Mg-based Mg-Zn metallic glasses at a wide range of compositions. Pair distribution function, Voronoi tessellation and dynamical analysis were adopted to characterize local structures in these glasses. Structural analysis was performed considering both topological and chemical short-range orders. It was found that structure of Mg-Zn metallic glasses... 

    Molecular dynamics study of structural formation in Cu50-Zr50 bulk metallic glass

    , Article Journal of Non-Crystalline Solids ; 2015 ; 00223093 (ISSN) Foroughi, A ; Tavakoli, R ; Aashuri, H ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this work, the evolution of the local structure in Cu50-Zr50 bulk metallic glass during glass formation was studied by molecular dynamics simulation. The pair distribution function and Voronoi analysis were adopted to characterize local structures in this alloy. The stability of icosahedral clusters and the role of other local clusters in the formation of icosahedra were evaluated. It was found that the (0,2,8,2) polyhedron is not only the dominant cluster in this alloy, but also the most prone cluster to convert into an icosahedron in the course of cooling. Moreover, it acts as an intermediate state during the icosahedron formation. The onset of stability of icosahedra emerges at the... 

    Molecular Dynamic Study of Short-and Medium-Range order Structures in Bulk Metallic Glasses

    , Ph.D. Dissertation Sharif University of Technology Foroughi, Alireza (Author) ; Aashuri, Hosien (Supervisor) ; Tavakoli, Roholah (Supervisor)
    Abstract
    In this work, structures of Cu-Zr bulk metallic glasses at atomic scale were studied by molecular dynamics simulation. Bulk metallic glasses have high glass form ability, which makes it possible to more effectively examine the relationship between structure and properties in glassy materials. Due to this reason, this family of materials has been selected in this research. Voronoi tessellation method, coordination number analysis, short-range order examination, glass transition temperature and pair distribution function have been selected to investigate the structure in atomic scale. Results show that full icosahedron (with the highest five-fold symmetry) and some distorted icosahedra have... 

    Evaluation of the role of deformation twinning in work hardening behavior of face-centered-cubic polycrystals

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 39, Issue 2 , 2008 , Pages 294-303 ; 10735623 (ISSN) Hamdi, F ; Asgari, S ; Sharif University of Technology
    2008
    Abstract
    Results of an investigation on the evolution of microstructure during simple compression testing of two face-centered-cubic (fcc) polycrystals, IN625 superalloy and 316L stainless steel, are reported and a review on the existing data related to the uniaxial deformation of fcc polycrystals is presented. It is found that while a number of fcc polycrystals show linear hardening behavior, the evolution of the underlying microstructure may be quite different. It is argued that, in contrast to the current belief, deformation twinning may not be the sole cause of linear hardening in low stacking fault energy (SFE) fcc polycrystals. It is suggested that, due to the requirement of slip system change... 

    Effect of chemical composition and affinity on the short- and medium-range order structures and mechanical properties of Zr-Ni-Al metallic glass

    , Article Journal of Non-Crystalline Solids ; Volume 456 , 2017 , Pages 68-75 ; 00223093 (ISSN) Jafary Zadeh, M ; Tavakoli, R ; Koh, J. J ; Aitken, Z. H ; Zhang, Y. W ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Previous studies have shown that a small variation in the chemical composition of metallic glasses (MGs) can drastically alter their strength and ductility. However, the underlying structural origin and atomistic mechanisms remain unclear. Using large-scale molecular dynamics simulations, we studied the effect of chemical composition and affinity on the microstructure and deformation behaviour of Zr50Ni50 − xAlx MG by varying the value of x in the range of 5 ≤ x ≤ 25 (at.%). We show that an increase in x is able to strengthen and embrittle the material. In particular, a ductile (homogeneous deformation) to brittle (shear banding) transition occurs at x ~ 15. To reveal the structural origin,... 

    Comparing shortrange and medium–range ordering in Cu–Zr and Ni–Zr metallic glasses – Correlation between structure and glass form ability

    , Article Journal of Non-Crystalline Solids ; Volume 499 , 2018 , Pages 227-236 ; 00223093 (ISSN) Ghaemi, M ; Tavakoli, R ; Foroughi, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    According to recent studies, Cu–Zr and Ni–Zr binary alloying systems are very similar based on known glass-forming ability criteria, however, they exhibit significant difference in glass-forming ability in practice. In this work, local atomic structures of Cu–Zr and Ni–Zr metallic glasses are studied by molecular dynamics simulation to explain the source of mentioned difference. The total and partial distribution functions, coordination number and voronoi analysis are utilized to characterize the local atomic structures around Zr, Ni and Cu atoms. It was found that the local environment around Zr atoms is almost similar in both systems. The difference in the atomic structure in these systems... 

    Linear Hardening in FCC Alloys

    , Ph.D. Dissertation Sharif University of Technology Hamdi, Farzad (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    Previous observation and models on the origin of linear hardening behavior in FCC polycrystals are critically reviewed. To reveal the draw backs of the previous models, selected results of an investigation on the evolution of microstructure during simple compression testing of two FCC polycrystals, Inconel 625 superalloy and AISI 316L stainless steel are reported. It is found that while a number of FCC polycrystals show linear hardening behavior, the evolution of the underlying microstructure may be quite different. It is argued that, in contrast to the current belief, deformation twinning may not be the sole cause of linear hardening in low SFE FCC polycrystals. It is suggested that only... 

    Simulation of the Effect of Cooling Rate and Chemical Composition on the Atomic Structure of Bulk Metallic Glass Iron-Phosphorus and Nickel-Phosphorus

    , M.Sc. Thesis Sharif University of Technology Hosseinzadeh, Danial (Author) ; Tavakoli, Rouhollah (Supervisor)
    Abstract
    bulk metallic glass Unlike metal materials that have a crystalline structure, amorphous glass is an amorphous material with an irregular atomic structure that simultaneously has the same physical properties as metals. Due to the absence of crystal defects such as dislocation and grain boundaries, these materials show unique mechanical properties such as high strength and elastic strain, abrasion resistance and proper corrosion. However, their plastic deformation is heterogeneous, concentrated, and accompanied by sudden failure. Unlike metals, these materials do not have a long-range crystalline order, and their atomic structure includes short-range and mid-range order. The short-range order... 

    Molecular dynamics study of structural formation in Cu50–Zr50 bulk metallic glass

    , Article Journal of Non-Crystalline Solids ; Volume 432 , 2016 , Pages 334-341 ; 00223093 (ISSN) Foroughi, A ; Tavakoli, R ; Aashuri, H ; Sharif University of Technology
    Elsevier B. V  2016
    Abstract
    In this work, the evolution of the local structure in Cu50–Zr50 bulk metallic glass during glass formation was studied by molecular dynamics simulation. The pair distribution function and Voronoi analysis were adopted to characterize local structures in this alloy. The stability of icosahedral clusters and the role of other local clusters in the formation of icosahedra were evaluated. It was found that the (0,2,8,2) polyhedron is not only the dominant cluster in this alloy, but also the most prone cluster to convert into an icosahedron in the course of cooling. Moreover, it acts as an intermediate state during the icosahedron formation. The onset of stability of icosahedra emerges at the... 

    On the glass-forming ability of (Zr0.5Cu0.5)100−xAlx ternary alloys: A molecular dynamics study

    , Article Materials Today Communications ; Volume 31 , 2022 ; 23524928 (ISSN) Abbasi, M. H ; Shabestari, S. G ; Tavakoli, R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this research, the atomic scale local structures in (Zr0.5Cu0.5)100−xAlx (x = 0,2,4,6,8,10,12) bulk metallic glass was studied using molecular dynamics simulation method. The pair distribution function, Voronoi analysis and mean squared displacement (MSD) were adopted for investigation of the local structures. It was found that Cu- and Al-centered full icosahedra possess the most frequency accompanied by the most changes during the glass transition process in the supercooled liquid region temperature. Moreover, it was observed that the Al-centered full icosahedra (Al-FI) and Cu-centered full icosahedra (Cu-FI) clusters with 2.5% and 1.9% increase (relative to total atoms), respectively,... 

    Influence of stacking fault energy and short-range ordering on dynamic recovery and work hardening behavior of copper alloys

    , Article Scripta Materialia ; Volume 62, Issue 9 , May , 2010 , Pages 693-696 ; 13596462 (ISSN) Hamdi, F ; Asgari, S ; Sharif University of Technology
    2010
    Abstract
    True stress vs. true strain responses of Cu-6 wt.% Al and Cu-12 wt.% Mn alloys are presented. While Cu-6 wt.% Al alloy shows the typical mechanical response of low stacking fault energy alloys, the Cu-12 wt.% Mn alloy behaved similarly to medium to high stacking fault energy alloys. These findings clearly show that while short-range ordering triggers slip planarity, it has a minor effect on total dynamic recovery of these copper alloys