Loading...
Search for: shape-function
0.009 seconds
Total 26 records

    The fiber element technique for analysis of concrete-filled steel tubes under cyclic loads

    , Article Structural Engineering and Mechanics ; Volume 14, Issue 2 , 2002 , Pages 119-133 ; 12254568 (ISSN) Golafshani, A. A ; Aval, S. B. B ; Saadeghvaziri, M. A ; Sharif University of Technology
    Techno-Press  2002
    Abstract
    A beam-column fiber element for the large displacement, nonlinear inelastic analysis of Concrete-Filled Steel Tubes (CFT) is implemented. The method of description is Total Lagrangian formulation. An 8 degree of freedom (DOF) element with three nodes, which has 3 DOF per end node and 2 DOF on the middle node, has been chosen. The quadratic Lagrangian shape functions for axial deformation and the quartic Hermitian shape function for the transverse deformation are used. It is assumed that the perfect bond is maintained between steel shell and concrete core. The constitutive models employed for concrete and steel are based on the results of a recent study and include the confinement and biaxial... 

    Sensitivity analysis of the galerkin finite element method neutron diffusion solver to the shape of the elements

    , Article Nuclear Engineering and Technology ; Volume 49, Issue 1 , 2017 , Pages 29-42 ; 17385733 (ISSN) Hosseini, S. A ; Sharif University of Technology
    Korean Nuclear Society  2017
    Abstract
    The purpose of the present study is the presentation of the appropriate element and shape function in the solution of the neutron diffusion equation in two-dimensional (2D) geometries. To this end, the multigroup neutron diffusion equation is solved using the Galerkin finite element method in both rectangular and hexagonal reactor cores. The spatial discretization of the equation is performed using unstructured triangular and quadrilateral finite elements. Calculations are performed using both linear and quadratic approximations of shape function in the Galerkin finite element method, based on which results are compared. Using the power iteration method, the neutron flux distributions with... 

    Application of Isogeometric Analysis in Determining Stress Distribution at the Tip of a Crack

    , M.Sc. Thesis Sharif University of Technology Zandinia, Meysam (Author) ; Jahanshahi, Mohsen (Supervisor)
    Abstract
    Isogeometric Analysis is one of the new methods for solving partial differential Equations which has special advantages compared to conventional methods such as the finite Element method. Some of these benefits can be used to approximate the geometry and solving the Equations governing the behavior of materials. Calculating the stress intensity factor at the tip of the Crack using classical method such as finite element method is done as well as IGA and gives Acceptable Results in linear range. Studying how to calculate these coefficients in combination with Isogeometric analysis method and comparing results with FEM due to novelty of the approach can have considerable importance for... 

    Study of Size Effect via Strain-gradient Elasticity Based RKPM in Nano-Structures

    , M.Sc. Thesis Sharif University of Technology Arshadi, Amir (Author) ; Mohammadi Shoja, Hossein (Supervisor)
    Abstract
    In this thesis one of the mesh-free methods called RKPM is employed to solve the differential equations of strain-gradient elasticity. To this end the corresponding weak form is laid down. Subsequently the relevant stiffness-matrix is obtained by discretization of the weak form. To be sure about the accuracy of the relations, the problem of a plate weakened by a hole under uniform far-field tension, for which the exact solution is available in the literature, is solved. The obtained numerical result is in good agreement with the solution of Eshel and Rosenfeld. Afterwards, a plate containing a crack of finite length subjected to uniform far-field tension (mode I) is considered. This problem... 

    New approximation functions in the meshless finite volume method for 2D elasticity problems

    , Article Engineering Analysis with Boundary Elements ; Vol. 46, issue , Sep , 2014 , p. 10-22 Ebrahimnejad, M ; Fallah, N ; Khoei, A. R ; Sharif University of Technology
    Abstract
    In this paper, two new approximation functions are introduced. These new techniques, which are referred herein as the multi-triangles method (MTM) and weighted multi-triangles method (WMTM) are applied for the approximation of unknowns and their derivatives at the points of interest. The approximations are performed in terms of the unknowns corresponding to the field nodes which are the vertices of the region surrounding the desired point and determined by Delaunay triangulations. The capability and accuracy of the proposed approximation functions are compared with the other approximating techniques in the meshless finite volume (MFV) frame work for some benchmark problems. Numerical... 

    Analytical investigation and numerical verification of Casimir effect on electrostatic nano-cantilevers

    , Article Microsystem Technologies ; Volume 14, Issue 2 , 2008 , Pages 145-157 ; 09467076 (ISSN) Ramezani, A ; Alasty, A ; Akbari, J ; Sharif University of Technology
    2008
    Abstract
    In this paper, the two-point boundary value problem (BVP) of the nano-cantilever deflection subjected to Casimir and electrostatic forces is investigated using analytical and numerical methods to obtain the instability point of the nano-beam. In the analytical treatment of the BVP, the nonlinear differential equation of the model is transformed into the integral form by using the Green's function of the cantilever beam. Then, closed-form solutions are obtained by assuming an appropriate shape function for the beam deflection to evaluate the integrals. The pull-in parameters of the beam are computed under the combined effects of electrostatic and Casimir forces. Electrostatic microactuators... 

    Numerical Modeling of Two Interacting Circular Holes Using a Gradient Elasticity Based Meshless Method

    , M.Sc. Thesis Sharif University of Technology Ramhormozian, Shahab (Author) ; Mohammadi Shoja, Hossain (Supervisor)
    Abstract
    A theory of gradient elasticity is used and numerically implemented by a meshless method that is called reproducing kernel particle method (RKPM) to model size effects. Some of the problems are modeled under the consideration of gradient elasticity for the first time and all of them are also modeled with classical elasticity to compare with gradient elasticity. First of all, the RKPM formulation and computing the amount of shape functions and requisite derivatives will be explained with details and a mathematical innovation that will decrease the computational cost seriously proposed for the first time. Several 1D and 2D shape functions with first and second derivatives that are resulted... 

    Effect of superheat and solidified layer on achieving good metallic bond between A390/A356 alloys fabricated by cast-decant-cast process

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Vol. 24, issue. 3 , March , 2014 , p. 665-672 Rahvard, M. M ; Tamizifar, M ; Boutorabi, M. A ; Shiri, S. G ; Sharif University of Technology
    Abstract
    The cast-decant-cast is a new method for the preparation of the functionally graded components that has been developed in recent years. The functionally graded cylindrical shape component with a radial gradient, e.g. the first alloy (A390) with high wear resistance on the surface of the piece and toughness and the second alloy (A356) of low machining costs in the core of the piece can be produced via this melt process. The effect of the second alloy superheat at temperatures of 750, 820 and 860 °C as well as the effect of the first alloy solidified layer at 25, 35 and 45 s decanting time on achieving the perfect interface between the two alloys was investigated. The characterization of the... 

    Design and implementation of a new spherical super element in structural analysis

    , Article Applied Mathematics and Computation ; Volume 218, Issue 14 , March , 2012 , Pages 7546-7561 ; 00963003 (ISSN) Sarvi, M. N ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    Finite Element Method (FEM) has proved to be a powerful tool for the analysis of mechanical problems such as finding natural frequency and deformation of structures. Design and implementation of super elements with a purpose in reduction of computational time along with accuracy is one of the challenges facing engineers in the past decade. In this study a newly spherical super element is designed and implemented to some problems. This element is generated in such a way that the user can select as many numbers of nodes as desired. Proper formulation is presented to generate the shape function for each node in this element. Some examples of static and vibration analysis using this element are... 

    Application of a new cylindrical element formulation in finite element structural analysis of FGM hollow cylinders

    , Article Finite Elements in Analysis and Design ; Volume 50 , March , 2012 , Pages 1-7 ; 0168874X (ISSN) Taghvaeipour, A ; Bonakdar, M ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    A finite element formulation is derived for the structural analysis of functionally graded hollow cylinders. The power-law distribution model is used for the composition of the constituent material in the thickness direction. According to property variation in FG cylinders, it is difficult to analyze them using the conventional element formulation. In order to facilitate the process of modeling and analyzing the FG cylinders, the finite element formulation is based on a newly designed cylindrical element. The new cylindrical element allows for property variations along the thickness, which results in considerable reduction of the required elements and eliminates the need to mesh the cross... 

    A polygonal finite element method for modeling crack propagation with minimum remeshing

    , Article International Journal of Fracture ; Volume 194, Issue 2 , 2015 ; 03769429 (ISSN) Khoei, A. R ; Yasbolaghi, R ; Biabanaki, S. O. R ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    In this paper, a polygonal finite element method is presented for crack growth simulation with minimum remeshing. A local polygonal mesh strategy is performed employing polygonal finite element method to model the crack propagation. In order to model the singular crack tip fields, the convex and concave polygonal elements are modified based on the singular quarter point isoparametric concept that improves the accuracy of the stress intensity factors. Numerical simulations are performed to demonstrate the efficiency of various polygonal shape functions, including the Wachspress, metric, Laplace and mean value shape functions, in modeling the crack tip fields. Eventually, analogy of the... 

    An Introduction to the Mathematical Theory of Generalized RKPM and Gradient RKPM

    , M.Sc. Thesis Sharif University of Technology Behzadan, Ali (Author) ; Mohammadi Shoja, Hossein (Supervisor)

    Numerical Analysis of a Plate Containing Multiple Circular Holes Via RKPM

    , M.Sc. Thesis Sharif University of Technology Soltani Mohammadi, Siavash (Author) ; Mohammdi Shodja, Hossein (Supervisor)
    Abstract
    In this thesis, some new models have been solved via RKPM method, which is one of the meshfree methods family. These models have never been solved via meshfree methods and their analytical solutions do not exist. At first, the RKPM shape functions and their first derivative formulation in 1D and 2D have been presented and then by using FORTRAN program, the shape functions and their first derivative have been obtained. To verifying the code some functions have been reproduced. In the next step by using the governing equations and penalty method whose formulation exists in chapter 2; some famous examples in linear elasticity have been solved via RKPM to verify the FORTRAN code. At last; some... 

    Development of two-dimensional, multigroup neutron diffusion computer code based on GFEM with unstructured triangle elements

    , Article Annals of Nuclear Energy ; Volume 51 , 2013 , Pages 213-226 ; 03064549 (ISSN) Hosseini, S. A ; Vosoughi, N ; Sharif University of Technology
    2013
    Abstract
    Various methods for solving the forward/adjoint equation in hexagonal and rectangular geometries are known in the literatures. In this paper, the solution of multigroup forward/adjoint equation using Finite Element Method (FEM) for hexagonal and rectangular reactor cores is reported. The spatial discretization of equations is based on Galerkin FEM (GFEM) using unstructured triangle elements. Calculations are performed for both linear and quadratic approximations of the shape function; based on which results are compared. Using power iteration method for the forward and adjoint calculations, the forward and adjoint fluxes with the corresponding eigenvalues are obtained. The results are then... 

    Static and vibrational analysis of fullerene using a newly designed spherical super element

    , Article Scientia Iranica ; Volume 19, Issue 5 , 2012 , Pages 1316-1323 ; 10263098 (ISSN) Nasiri Sarvi, M ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    Accurate prediction of static and dynamic response of nano structures under external excitations has been one of the interests of scientists in the last decade. Several applications of nano machines make it necessary to analyze their components, such as nano bearing, precisely. In this paper, the static and vibrational behavior of a fullerene as a sensitive part of nano bearing under external forces is simulated by a newly designed spherical super element. This super element is designed in such a way that the user can select as many numbers of nodes as desired, so that it can be implemented in different desired precisions. In this study, a 228-node super element, which is similar to a hollow... 

    Out-of-plane stresses in composite shell panels: Layerwise and elasticity solutions

    , Article Acta Mechanica ; Volume 220, Issue 1-4 , 2011 , Pages 15-32 ; 00015970 (ISSN) Miri, A. K ; Nosier, A ; Sharif University of Technology
    Abstract
    Boundary-layer effects in lengthy cross-ply laminated circular cylindrical shell panels under uniform axial extension are investigated by two analytical solutions. First, Reddy's layerwise theory with state-space approach is utilized to determine the local interlaminar stresses. In this method, the general displacement field is discretized through the shell thickness by a linear shape function. When the shell panel is subjected to an axial force, the axial strain is estimated by an equivalent single-layer theory. Second, the stress-function approach along with Fourier series expansion is applied to develop a novel elasticity solution. The elasticity solution, which is based on simply-support... 

    Free vibration of generally laminated plates with various shapes

    , Article Polymer Composites ; Volume 32, Issue 3 , FEB , 2011 , Pages 445-454 ; 02728397 (ISSN) Yousefi, P ; Kargarnovin, M. H ; Hosseini Hashemi, S. H ; Sharif University of Technology
    Abstract
    This article is focused on a simple approach for determining the natural frequency and mode shape of laminated angle-ply plates with various shapes by rectangular orthotropy. Since the boundary of the domain for all shapes are not natural to the material coordinate axes it seems appropriate to express the plate displacement amplitude in terms of a polynomial and a general shape function multiplication in the x and y coordinates. The boundary conditions considered are clamped and simply supported edges. The effect of the fiber orientation, layer number, and lamination sequence on the natural frequencies of plates is also considered. The natural frequency determinant has been generated using... 

    On the dynamics of the flexible robot arm in a real deployment profile

    , Article 2010 IEEE International Conference on Robotics, Automation and Mechatronics, RAM 2010, Singapore, 28 June 2010 through 30 June 2010 ; 2010 , Pages 112-117 ; 9781424465033 (ISBN) Bagheri Ghaleh, P ; Malaek, S. M ; Sharif University of Technology
    2010
    Abstract
    The dynamics of the flexible robot arm subjected to tip mass during an actual deployment is studied. The Euler-Bernoulli beam theory and the real deployment are considered in the simulation. A new real axial velocity profile is developed. This new suggested profile simulates the actual deployment such that the arm movement starts from immovability and after attaining the final required length comes back again to the static state. Using Lagrange's equation, the equations of motion of the system are derived to study the system dynamics in this suggested deployment profile. A series approximation is used to represent the lateral elastic displacements. Using variables separation and also some... 

    Calculation of stress intensity factor for functionally graded cylinders with two radial cracks using the weight function method

    , Article Theoretical and Applied Fracture Mechanics ; Volume 85 , 2016 , Pages 447-456 ; 01678442 (ISSN) Mirahmadi, H ; Azimi, M ; Mirjavadi, S. S ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    In this study, obtaining stress intensity factors (SIFs) for functionally graded cylinders with two internal radial cracks using the weight function method has been discussed. For this purpose, reference SIFs are calculated from the results of finite element analysis, using a modified domain of the J integral. Subsequently, SIFs have been calculated for different combinations of cylinder geometry, crack depth, and material gradation by implementing the weight function method and it is shown that the results are consistent with corresponding results obtained from finite element analysis. Moreover, the effects of variation in the elastic modulus ratio on SIFs have been investigated. © 2016... 

    Buckling analysis of multilayered functionally graded composite cylindrical shells

    , Article Applied Mechanics and Materials ; Volume 108 , 2012 , Pages 74-79 ; 16609336 (ISSN) ; 9783037852729 (ISBN) Kargarnovin, M. H ; Hashemi, M ; Sharif University of Technology
    Abstract
    In this paper, the buckling analysis of a multilayered composite cylindrical shell which volume fraction of its fiber varies according to power law in longitudinal direction, due to applied compressive axial load is studied. Rule of mixture model and reverse of that are employed to represent elastic properties of this fiber reinforced functionally graded composite. Strain displacement relations employed are based on Reissner-Naghdi-Berry's shell theory. The displacement finite element model of the equilibrium equations is derived by employing weak form formulation. The Lagrangian shape function for in-plane displacements and Hermitian shape function for displacement in normal direction to...