Loading...
Search for: shallow-water
0.006 seconds

    Influence of channel shape on wave-generated parameters by a pressure source in shallow water

    , Article Journal of Waterway, Port, Coastal and Ocean Engineering ; Volume 143, Issue 5 , 2017 ; 0733950X (ISSN) Javanmardi, M ; Binns, J ; Renilson, M ; Thomas, G ; Sharif University of Technology
    Abstract
    The present work is a numerical investigation into the waves generated by a pressure source moving in straight channels with a nonrectangular cross-channel depth profile. Wave fields generated by the moving pressure source are described, and the effects of channel bathymetry on the generated wave characteristics of wave height, wave-breaking location, wave-breaking type and intensity, and peel angle are presented. Four different channel cross-section shapes were investigated, and the results were analyzed. It was concluded that the maximum wave height depended primarily on pressure-source parameters and that the investigated channel shapes did not have a significant effect on the maximum... 

    Investigating sensitivity of flow parameters and uncertainty analysis of nutrient transport and dispersion model in shallow water. (Case study: Peer-bazar river and anzali wetland)

    , Article Desalination and Water Treatment ; Volume 174 , 2020 , Pages 204-214 Homami, M ; Mirbagheri, S. A ; Borghei, S. M ; Abbaspour, M ; Sharif University of Technology
    Desalination Publications  2020
    Abstract
    Accurate modeling of runoff in watersheds requires calibration and uncertainty analysis of effective flow parameters and identifying of their statistical characteristics based on inter-parameter relationships and model inputs. In this research, the transport and diffusion of pollution (nutrients) in the river were simulated through the two-dimensional finite-volume method using the shallow water equations. To numerically solve these equations, the governing equations were converted into linear equations. Uncertainty and sensitivity of the prepared pollution model were analyzed to achieve better results in estimating pollution concentrations in rivers within a reliable range. In this study,... 

    A conservative extension of the method of characteristics for 1-D shallow flows

    , Article Applied Mathematical Modelling ; Volume 31, Issue 2 , 2007 , Pages 332-348 ; 0307904X (ISSN) Mohammadian, A ; Le Roux, D. Y ; Tajrishi, M ; Sharif University of Technology
    2007
    Abstract
    The method of characteristics (MOC) has been used for a long time in open channels and pipes flows. It is based on non-conservative equations, and hence it cannot be used directly for solving discontinuous shallow flows. In this paper we develop a conservative version of the MOC scheme for 1-D shallow flows by imposing the conservation law at the interpolation step. The conservation property of the scheme ensures the production of an accurate shock modeling and enables the MOC scheme to simulate dam-break type flows. By using a proper interpolation function, the proposed method can also produce quite accurate low-oscillatory results. A number of challenging test cases show considerable... 

    A mass conservative scheme for simulating shallow flows over variable topographies using unstructured grid

    , Article Advances in Water Resources ; Volume 28, Issue 5 , 2005 , Pages 523-539 ; 03091708 (ISSN) Mohamadian, A ; Le Roux, D. Y ; Tajrishi, M ; Mazaheri, K ; Sharif University of Technology
    2005
    Abstract
    Most available numerical methods face problems, in the presence of variable topographies, due to the imbalance between the source and flux terms. Treatments for this problem generally work well for structured grids, but most of them are not directly applicable for unstructured grids. On the other hand, despite of their good performance for discontinuous flows, most available numerical schemes (such as HLL flux and ENO schemes) induce a high level of numerical diffusion in simulating recirculating flows. A numerical method for simulating shallow recirculating flows over a variable topography on unstructured grids is presented. This mass conservative approach can simulate different flow... 

    The Effect of Performance of Ships Propeller on its Maneuvering in Shallow and Deep Water

    , M.Sc. Thesis Sharif University of Technology Kargar, Soroush (Author) ; Seif, Mohammad Saeed (Supervisor)
    Abstract
    In this thesis ship propeller performance in maneuvering conditions have been investigated which means an oblique flow condition for working propeller. Then results of these investigations have been put to use to simulate maneuvering using MMG equations. These calculations have been done to investigate nominal wake variations in different drift angles and depth conditions. In this project displacement vessel KVLCC2 and propeller POTSDAM VP1304 have been studied due to the abundance of experimental data. Calculations in this study have been carried in three steps: 1, calculation of nominal wake of the vessel in different drift angles and depths via CFD. 2, Using the results of previous... 

    A comparative study of earthquake source models in high-order accurate tsunami simulations

    , Article Ocean Modelling ; Volume 141 , 2019 ; 14635003 (ISSN) Hajihassanpour, M ; Bonev, B ; Hesthaven, J. S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The discontinuous Galerkin method is used to solve the non-linear spherical shallow water equations with Coriolis force. The numerical method is well-balanced and takes wetting/drying into account. The two fold goal of this work is a comparative study of dynamic and static tsunami generation by seabed displacement and the careful validation of these source models. The numerical results show that the impact of the choice of seabed displacement model can be significant and that using a static approach may result in inaccurate results. For the validation of the studies, we consider measurements from satellites and buoy networks for the 2011 Tohoku event and the 2004 Sumatra–Andaman tsunami. The... 

    Numerical modeling of subaerial and submarine landslide-generated tsunami waves—recent advances and future challenges

    , Article Landslides ; Volume 13, Issue 6 , 2016 , Pages 1325-1368 ; 1612510X (ISSN) Yavari Ramshe, S ; Ataie Ashtiani, B ; Sharif University of University
    Springer Verlag 
    Abstract
    Landslide-generated waves (LGWs) are among natural hazards that have stimulated attentions and concerns of engineers and researchers during the past decades. At the same period, the application of numerical modeling has been progressively increased to assess, control, and manage the risks of such hazards. This paper represents an overview of numerical studies on LGWs to explore associated recent advances and future challenges. In this review, the main landslide events followed by an LGW hazard are scrutinized. The uncertainty regarding landslide characteristics and the lack of data concerning generated tsunami properties highlights the necessity of probabilistic analysis and numerical... 

    An investigation into the effect of pressure source parameters and water depth on the wake wash wave generated by moving pressure source

    , Article Scientia Iranica ; Volume 25, Issue 4 , 2018 , Pages 2162-2174 ; 10263098 (ISSN) Javanmardi, M ; Binns, J ; Thomas, G ; Renilson, M ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    In this study, the effect of moving pressure source and channel parameters on the generated waves in a channel was numerically investigated; draught, angle of attack, and profile shape as parameters of pressure source, and water depth and blockage factor as channel parameters for wave height. Firstly, the chosen Computational Fluid Dynamics (CFD) approach was validated with the experimental data over a range of speeds. Then, the CFD study was conducted for further investigations. It was shown that that by enlarging draught, angle of attack, and beam of the pressure source, the wave height generated would be increased. Channel study showed that it was possible to increase the wave height... 

    Two-dimensional model of melt flows and interface instability in aluminum reduction cells

    , Article Light Metals 2008, New Orleans, LA, 9 March 2008 through 13 March 2008 ; 2008 , Pages 443-448 ; 01470809 (ISSN); 9780873397100 (ISBN) Kadkhodabeigi, M ; Sharif University of Technology
    2008
    Abstract
    We derive a new non-linear two dimensional model for melt flows and interface instability in aluminum reduction cells. This model is based on non-linear de St. Venant shallow water equations and contains the main features of an aluminum reduction cell. In this model we consider linear friction terms but in a new way that has not been considered in previous works. Our results are in good agreement with the results of simulation of viscous flow. This model is applicable both in determination of melt flows in molten aluminum and cryolite layers and also in finding the extreme limit for stability of interfacial waves in an aluminum reduction cell  

    Numerical investigation of the effects of soil densification on the reduction of liquefaction-induced settlement of shallow foundations

    , Article Scientia Iranica ; Volume 16, Issue 4 A , 2009 , Pages 331-339 ; 10263098 (ISSN) Shahir, H ; Pak, A ; Sharif University of Technology
    2009
    Abstract
    The liquefaction phenomenon is usually accompanied by a large amount of settlement. Based on the observations made in past earthquakes, ground improvement by densification is one of the most useful approaches to reduce the liquefaction-induced settlement. Currently, there is no analytical solution for evaluation of the amount of settlement and tilting of footings that are constructed on densified ground surrounded by liquefiable soil. A number of factors, such as underlying soil properties, dimensions of the footing and earthquake loading characteristics, cause the problem to become complicated. In this paper, the dynamic response of shallow foundations on both liquefiable and...