Loading...
Search for: sealants
0.009 seconds

    Micro-scale evolution of mechanical properties of glass-ceramic sealant for solid oxide fuel/electrolysis cells

    , Article Ceramics International ; Volume 47, Issue 3 , 2021 , Pages 3884-3891 ; 02728842 (ISSN) Fakouri Hasanabadi, M ; Malzbender, J ; Groß Barsnick, S. M ; Abdoli, H ; Kokabi, A. H ; Faghihi Sani, M. A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The structural integrity of the sealant is critical for the reliability of solid oxide cells (SOCs) stacks. In this study, elastic modulus (E), hardness (H) and fracture toughness (KIC) of a rapid crystallizing glass of BaO–CaO–SiO2 system termed “sealant G” are reported as determined using an indentation test method at room temperature. A wide range of indentation loads (1 mN–10 N) was used to investigate the load-dependency of these mechanical properties. Values of 95 ± 12 GPa, 5.8 ± 0.2 GPa and 1.15 ± 0.07 MPa m0.5 were derived for E, H and KIC using the most suitable indentation loads. An application relevant annealing treatment of 500 h at 800 °C does not lead to a significant change of... 

    Micro-scale evolution of mechanical properties of glass-ceramic sealant for solid oxide fuel/electrolysis cells

    , Article Ceramics International ; 2020 Fakouri Hasanabadi, M ; Malzbender, J ; Groß Barsnick, S. M ; Abdoli, H ; Kokabi, A. H ; Faghihi Sani, M. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The structural integrity of the sealant is critical for the reliability of solid oxide cells (SOCs) stacks. In this study, elastic modulus (E), hardness (H) and fracture toughness (KIC) of a rapid crystallizing glass of BaO–CaO–SiO2 system termed “sealant G” are reported as determined using an indentation test method at room temperature. A wide range of indentation loads (1 mN–10 N) was used to investigate the load-dependency of these mechanical properties. Values of 95 ± 12 GPa, 5.8 ± 0.2 GPa and 1.15 ± 0.07 MPa m0.5 were derived for E, H and KIC using the most suitable indentation loads. An application relevant annealing treatment of 500 h at 800 °C does not lead to a significant change of... 

    YSZ Coating on Ferritic Stainless Steel Interconnect through Sol-Gel Method and Studying its Reaction with Glass Sealant in SOFC

    , M.Sc. Thesis Sharif University of Technology Mousa Mirabad, Homayoun (Author) ; Faghihi Sani, Mohammad Ali (Supervisor) ; Nemati, Ali (Supervisor)
    Abstract
    Solid oxide fuel cells are used to convert solid-state energy to direct electrical current by electrochemistry mixing a gas fuel and an oxidant in an oxide electrolyte. One of the most interesting aspects of this field for the researchers is the reaction between the metal interconnect and the glass sealant. In the current research, deposition of the YSZ coating onto the metal interconnect in order to impede the reaction with glass sealant and prohibition of its oxidation in oxidizing/reducing environment in high temperature, was mainly investigated. Effect of applying YSZ Thin layer in the intersection of Crofer steel and glass sealant on strength and chemical durability of these two... 

    The analysis of torsional shear strength test of sealants for solid oxide fuel cells

    , Article Ceramics International ; Volume 43, Issue 15 , 2017 , Pages 12546-12550 ; 02728842 (ISSN) Fakouri Hasanabadi, M ; Faghihi Sani, M. A ; Kokabi, A. H ; Malzbender, J ; Sharif University of Technology
    Abstract
    A torsion test recently implemented for solid oxide fuel cell sealant materials is analyzed as a method for measuring the shear strength of sealant for solid oxide fuel cells. The finite element method is used to simulate the stress distribution in the hourglass-shaped steel specimens with intermediate sealant layer with different specimen's dimensions and configurations. Also, it is analyzed how stress concentration changes if the sealant does not completely fill the gap or is squeezed out of gap. The reduction of seal thickness to outer radius ratio results in an increase in stress concentration at the outer edge of sealant. The developed specimens with a hollow halve steel plate as well... 

    Finite element optimization of sample geometry for measuring the torsional shear strength of glass/metal joints

    , Article Ceramics International ; Volume 46, Issue 4 , 2020 , Pages 4857-4863 Fakouri Hasanabadi, M ; Malzbender, J ; Groß Barsnick, S. M ; Abdoli, H ; Kokabi, A. H ; Faghihi Sani, M. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Assessment of mechanical properties of glass/metal joints is a challenging process, especially when the application relevant conditions of the joints have to be considered in the test design. In this study, a finite element method (FEM) is implemented to analyze a torsional shear strength test designed for glass-ceramic/steel joints aiming towards solid oxide fuel/electrolysis cells application. Deviations from axial symmetry of the square flanges (ends) of respective hourglass-shaped specimens and also supporting and loading sockets of the test set-up are included in the model to simulate conditions close to reality. Undesirable tensile stress and also shear stress concentration appear at... 

    Room- and high-temperature torsional shear strength of solid oxide fuel/electrolysis cell sealing material

    , Article Ceramics International ; Volume 45, Issue 2 , 2019 , Pages 2219-2225 ; 02728842 (ISSN) Fakouri Hasanabadi, M ; Kokabi, A. H ; Faghihi Sani, M. A ; Groß Barsnick, S. M ; Malzbender, J ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The structural integrity of the sealant material is critical for the reliability of solid oxide fuel/electrolysis stacks. In the current study, a torsion test is implemented to evaluate and compare its shear strength with a partially crystallized glass sealant at room- and operation relevant high-temperatures. Hourglass-shaped specimens with different configurations of hollow- and full-halves are utilized for testing. The fracture surfaces are visualized via optical microscopy and complementary scanning electron microscopy. In addition, cyclic loading is used to investigate potential subcritical crack growth effects in the sealants. Both, the specimens with a hollow-half as well as the ones... 

    Investigation of Mechanical Properties of Glass-Ceramic Sealant for Solid Oxide Fuel/Electrolysis Cells

    , Ph.D. Dissertation Sharif University of Technology Fakouri Hassanabadi, Masood (Author) ; Kokabi, Amir Hossein (Supervisor) ; Faghihi-Sani, Mohammad Ali (Supervisor) ; Abdoli, Hamid (Co-Supervisor)
    Abstract
    The structural integrity of the sealing material is critical for the reliability of solid oxide fuel/electrolysis stacks. In this study, the mechanical properties of a rapid crystallizing glass of BaO-CaO-SiO2 system were evaluated. The crystallization as a determining factor in the mechanical behavior of the glass-ceramic sealant was investigated via high-temperature X-Ray diffraction spectrometer. Three- and four-point bending tests were carried out to measure the flexural strength (σ) of sealant material bars and head-to-head joined specimens at room- and high-temperatures. In addition, the elastic modulus (E) was measured by impulse excitation test up to 900 ºC. Also, the indentation... 

    Advanced analysis of flexural test results of sealant for solid oxide cells

    , Article International Journal of Applied Ceramic Technology ; Volume 18, Issue 6 , 2021 , Pages 2091-2098 ; 1546542X (ISSN) Fakouri Hasanabadi, M ; Kokabi, A. H ; Faghihi Sani, M. A ; Abdoli, H ; Malzbender, J ; Gross Barsnick, S. M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    The conventional relations for calculating the fracture stresses consider only elastic deformation but ignore viscoelastic and viscoplastic behaviors. Measuring the joining strength of a composite glass sealant-metallic interconnect specimen at solid oxide cell application relevant at high temperatures is a case where such effects can become significant. In the current study, three-point and four-point bending test results were analyzed using the finite element method (FEM) to assess systematic and random errors. It is shown that plastic deformation of the steel interconnect material at high temperature, although having a large effect on the stress distribution in the... 

    Development of a genetic algorithm based biomechanical simulation of sagittal lifting tasks

    , Article Biomedical Engineering - Applications, Basis and Communications ; Volume 17, Issue 1 , 2005 , Pages 12-18 ; 10162372 (ISSN) Gündoǧdu, Ö ; Anderson, K. S ; Parnianpour, M ; Sharif University of Technology
    Institute of Biomedical Engineering  2005
    Abstract
    Fibrin sealant and platelet gels are human blood-derived, biodegradable, non toxic, surgical products obtained by mixing a fibrinogen concentrate or a platelet rich plasma with thrombin, respectively. Fibrin sealant is now a well known surgical tool increasingly used to stop or control bleeding, or to provide air and fluid tightness in many surgical situations. Platelet gels are newly developed preparations that are of specific interest because they contain numerous physiological growth factors and cytikines that are released upon the activation of blood platelets by thrombin. These growth factors, including PDGF, TGF-β1, BMP, and VEGF have been shown to stimulate cell growth and...