Loading...
Search for: scaffold
0.009 seconds
Total 223 records

    Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: An in vitro, in vivo study

    , Article International Journal of Pharmaceutics ; 2020 Shamloo, A ; Aghababaie, Z ; Afjoul, H ; Jami, M ; Bidgoli, M. R ; Vossoughi, M ; Ramazani, A ; Kamyabhesari, K ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, physically cross-linked hydrogels were developed by freezing-thawing method while different concentrations of honey were included into the hydrogels for accelerated wound healing. The hydrogel was composed of chitosan, polyvinyl alcohol (PVA), and gelatin with the ratio of 2:1:1 (v/v), respectively. Further, the effect of honey concentrations on antibacterial properties, and cell behavior was investigated. In vivo studies, including wound healing mechanism using rat model and histological analysis of section tissue samples were performed. The results illustrated that the incorporation of honey in hydrogels increased the ultimate strain of hydrogels approximately two times,... 

    Bioprinting a thick and cell-laden partially oxidized alginate-gelatin scaffold with embedded micro-channels as future soft tissue platform

    , Article International Journal of Biological Macromolecules ; Volume 193 , 2021 , Pages 2153-2164 ; 01418130 (ISSN) Khalighi, S ; Saadatmand, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Despite all the advancements in tissue engineering, one of the unsolved challenges is the mass transfer limitation. Therefore, the subject of pre-vascularization in the engineered tissues gets more attention to avoid necrotic core formation. In this study, we considered a design for interconnected channels with a muscle tissue-like structure, in silico and in vitro. A sequence of simple steps make it possible for us to use the same material, gelatin, as both a sacrificial material and one of the main components of the scaffold simultaneously. We defined a new approach to quantify the repeatability of a new combination of hydrogels (Partially Oxidized Alginate + Gelatin) for extrusion-based... 

    Hydrodynamic Simulation of Vascular Scaffolds

    , M.Sc. Thesis Sharif University of Technology Zehimofrad, Alireza (Author) ; Bastani, Dariush (Supervisor) ; Mashayekhan, Shohreh (Supervisor)
    Abstract
    This research studies a 3D channeled myocardium scaffold with computational fluid dynamics. It proposes a mathematical model to evaluate the impact of oxygen carriers and scaffold geometry on cell growth in a 3D cardiac construct. The modeling results show that using 5.4% perfluorocarbon oxygen carrier (PFC) has increased cardiac cells density 15% of the initial seeded cells comparing to pure culture medium without PFC supplementation. Effects of the scaffold geometry on cell density in the construct were examined by increasing channel numbers and changing the construct length. The results show that increasing channel numbers (by 50% decreasing channels diameter and wall to wall spacing) the... 

    Preparation and Characterization of Hydroxyapatite Nanostructures Using Natural Resources for Bone Scaffold Applications

    , M.Sc. Thesis Sharif University of Technology Gheysari, Hengameh (Author) ; Simchi, Abdolreza (Supervisor) ; Askari, Masoud (Supervisor)
    Abstract
    This investigation presents synthesis and characterization of pure and monophasic hydroxyapatite (Ca10(PO4)6(OH)2; HA) Nanostructures prepared by coral and oyster shell powders heated at 800 oC for 8 h as precursor via precipitation method. The morphology of HA nanostructures was controlled in the presence of various surfactants such as SDS, CTAB and PVP. The HA Nanorods synthesized by SDS were applied to fabricate bone scaffolds. Particle sizes of the HA Nanoparticles were about 20-30 nm. Pours three-dimensional HA/Ge/CMC scaffolds cross-linked by citric and oxalic acids were synthesized. In order to increase the pore size of the scaffolds, NaCl with medium (180-250 µm) and large (420-500... 

    Fabrication and characterization of electrospun poly-L-lactide/gelatin graded tubular scaffolds: Toward a new design for performance enhancement in vascular tissue engineering

    , Article Progress in Natural Science: Materials International ; Volume 25, Issue 5 , October , 2015 , Pages 405–413 ; 10020071 (ISSN) Yazdanpanah, A ; Tahmasbi, M ; Amoabediny, G ; Nourmohammadi, J ; Moztarzadeh, F ; Mozafari, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this study, a new design of graded tubular scaffolds have been developed for the performance enhancement in vascular tissue engineering. The graded poly-L-lactide (PLLA) and gelatin fibrous scaffolds produced by electrospining were then characterized. The morphology, degradability, porosity, pore size and mechanical properties of four tubular scaffolds (graded PLLA/gelatin, layered PLLA/gelatin, PLLA and gelatin scaffolds) have been investigated. The tensile tests demonstrated that the mechanical strength and also the estimated burst pressure of the graded scaffolds were significantly increased in comparison with the layered and gelatin scaffolds. This new design, resulting in an increase... 

    Geometry optimization of a fibrous scaffold based on mathematical modelling and CFD simulation of a dynamic cell culture

    , Article Computer Aided Chemical Engineering ; Volume 38 , 2016 , Pages 1413-1418 ; 15707946 (ISSN); 9780444634283 (ISBN) Tajsoleiman, T ; Abdekhodaie, M. J ; Gernaey, K. V ; Krühne, U ; Kravanja, Z ; Bogataj, M ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    In tissue engineering, the development of a tissue essentially depends on supply of an adequate amount of nutrients and the design of a proper biophysical micro-environment for cells. The limitation of the available initial number of cells, expensive substances and time consuming experiments are the main bottlenecks in this type of processes. In this regard, mathematical modelling and computational fluid dynamics simulation (CFD) are powerful tools to identify an efficient and optimized design by providing reliable insights of the process. This study presents a mathematical model and CFD simulation of cartilage cell culture under a perfusion flow, which allows not only to characterize the... 

    Mechanical and piezoelectric characterizations of electrospun PVDF-nanosilica fibrous scaffolds for biomedical applications

    , Article 2017 INN International Conference/Workshop on Nanotechnology and Nanomedicine, NTNM 2017, 2 May 2017 through 3 May 2017 ; Volume 5, Issue 7 , 2018 , Pages 15710-15716 ; 22147853 (ISSN) Haddadi, S. A ; Ghaderi, S ; Amini, M ; Ramazani, S. A. A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The effects of hydrophilic and hydrophobic nanosilica (SiO2) on the morphology, mean diameter distribution of fibers, mechanical and piezoelectric properties of poly (vinylidene fluoride) (PVDF) nanofibers were studies. We prepared Nanofibers by the electrospinning of PVDF solutions containing 1.5 wt.% both hydrophilic and hydrophobic nano-SiO2 loadings. Morphology and diameter distribution of the electrospun nanofibers were studied using field emission scanning electron microscopy (FE-SEM) analysis. Tensile test was used to study the effect of both types of nanosilica on the tensile strength, young's modulus and strain at break. Piezoelectric characterization of the electrospun fibers were... 

    A hybrid scaffold of gelatin glycosaminoglycan matrix and fibrin as a carrier of human corneal fibroblast cells

    , Article Materials Science and Engineering C ; Volume 118 , 2021 ; 09284931 (ISSN) Hajian Foroushani, Z ; Mahdavi salimi, S ; Abdekhodaie, M. J ; Baradaran Rafii, A ; Tabatabei, M. R ; Mehrvar, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    A hybrid scaffold of gelatin-glycosaminoglycan matrix and fibrin (FGG) has been synthesized to improve the mechanical properties, degradation time and cell response of fibrin-like scaffolds. The FGG scaffold was fabricated by optimizing some properties of fibrin-only gel and gelatin-glycosaminoglycan (GG) scaffolds. Mechanical analysis of optimized fibrin-only gel showed the Young module and tensile strength of up to 72 and 121 KPa, respectively. Significantly, the nine-fold increase in the Young modulus and a seven-fold increase in tensile strength was observed when fibrin reinforced with GG scaffold. Additionally, the results demonstrated that the degradation time of fibrin was enhanced... 

    ZnO-incorporated polyvinylidene fluoride/poly(ε-caprolactone) nanocomposite scaffold with controlled release of dexamethasone for bone tissue engineering

    , Article Applied Physics A: Materials Science and Processing ; Volume 128, Issue 8 , 2022 ; 09478396 (ISSN) FotouhiArdakani, F ; Mohammadi, M ; Mashayekhan, S ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Here we report on the development of a hybrid nanofibrous scaffold made from polyvinylidene fluoride (PVDF) nanofibers embedding zinc oxide nanorods (ZnOns), and poly(ε-caprolactone) (PCL) nanofibers incorporating dexamethasone (DEX)-loaded chitosan nanoparticles using dual-electrospinning method. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and tensile analysis were carried out for physiochemical characterization of the scaffolds, followed by DEX release profile. In addition, an MTT assay was conducted to assess the viability of mouse bone marrow-derived mesenchymal stem cells (mBMSCs) on the hybrid nanofibrous scaffold.... 

    Fabrication and Optimizing a Bilayer Scaffold with the Ability to Release Growth Factors in Aim to Treating Injuries in Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Seifi, Saeed (Author) ; Shamloo, Amir (Supervisor) ; Hosseini, Vahid (Supervisor)
    Abstract
    Skin, as the largest organ of the body and the first protector against external injuries, plays an important role in maintaining human health. Therefore, providing a method for complete treatment of skin lesions is very important. In the last century, tissue engineering approaches, with the introduction of skin scaffolds, have been instrumental in the process of skin tissue regeneration and treatment. The aim of the present study is to construct an optimal bilayer scaffold to mimic the two outer layer of the skin (epidermis and dermis). Besides, the effects of placenta extract on acceleration of wound healing was investigated by an in-vivo test. both layer of scaffold are porous hydrogels,... 

    In-situ crosslinking of electrospun gelatin-carbodiimide nanofibers: fabrication, characterization, and modeling of solution parameters

    , Article Chemical Engineering Communications ; Volume 208, Issue 7 , 2021 , Pages 976-992 ; 00986445 (ISSN) Hajiabbas, M ; Alemzadeh, I ; Vossoughi, M ; Shamloo, A ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    This work has focused on in-situ crosslinking of gelatin (G) to produce electrospun scaffold with improved fiber morphology retention and mechanical properties. As per this approach, we prepared G nanofibers through mixing G, 1-ethyl-3-(3 dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) in the new solvent system. Response surface methodology (RSM) was employed to study the influence of solution parameters on fiber diameter. The morphological structure was examined, and the appropriate level of setting to obtain smooth fibers with a favorable diameter was reported. Results revealed using EDC/NHS for in-situ crosslinking improves the mechanical properties... 

    Engineered conducting polymer-based scaffolds for cell release and capture

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2022 ; 00914037 (ISSN) Mahdavi, S. S ; Abdekhodaie, M. J ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Conducting polymer-based devices and scaffolds has become remarkably popular due to their properties such as conductivity, tunable electrochemical properties, and straightforward fabrication procedures. Hence, they have versatile applications and can be used as implants, biosensors, cell capture/release devices, and regenerative medicine scaffolds. This review addresses the effect of conductive polymers on cell behavior since their conductive features can be applied to simulate a cellular response. Moreover, the impact of polymer chemical and physical properties on cellular response has been discussed. Recent biomedical engineering approaches used for cell capture and release were reviewed... 

    Mechanical Properties Enhancement of Hydrogel Scaffolds Using Combination of Electrospun Nanofibers

    , M.Sc. Thesis Sharif University of Technology Moghaddam Deymeh, Saeed (Author) ; Mashayekhan, Shohreh (Supervisor)
    Abstract
    Cardiovascular disease is responsible for a majority of health problem in developing countries. Heart diseases are the leading cause of death in the United State with approximately 40% of the death occurs by heart failures and coronary artery defects. Myocardial infarction is one of the diseases that occurs by coronay artery blockage. Cardiac tissue engineering (CTE) is an emerging field that holds great promise towards the development of innovative treatment strategies for heart disease. There are two common scaffolds for CTE, electrospun fiber mats and hydrogels. Although fibers are known as 3D environment for cells, they actually act as a 2D surface, because of lack of cell infilteration.... 

    Design and Fabrication of Biodegradable Polymeric Scaffold with nano-Bioglass for Osteoblast cell Growth

    , M.Sc. Thesis Sharif University of Technology Razaghzadeh Bidgoli, Mina (Author) ; Vossoughi, Manouchehr (Supervisor) ; Alemzadeh, Iran (Supervisor) ; Tamjid Shabesteri, Elnaz (Co-Advisor)
    Abstract
    Treatment of critical-size bone defects caused by sport injuries, accidents, trauma, infection, and osteoporosis remains a major clinical challenge. In order to repair or regenerate large bone defects, bioactive three-dimensional scaffolds play a key role due to their multilevel porous structure, high surface area, enhanced mass transport and diffusion. Many studies reported that macropore diameters greater than 500 µm can lead to vascularized bone tissue. In this study, a hierarchically porous composite scaffold was prepared. Hierarchically porous silk fibroin- bioactive glass composite and fibroin scaffold were fabricated with controlled architecture and interconnected structure with... 

    Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application

    , Article Scientific Reports ; Volume 12, Issue 1 , 2022 ; 20452322 (ISSN) Shahverdi, M ; Seifi, S ; Akbari, A ; Mohammadi, K ; Shamloo, A ; Movahhedy, M. R ; Sharif University of Technology
    Nature Research  2022
    Abstract
    Fabrication of well-ordered and bio-mimetic scaffolds is one of the most important research lines in tissue engineering. Different techniques have been utilized to achieve this goal, however, each method has its own disadvantages. Recently, melt electrowriting (MEW) as a technique for fabrication of well-organized scaffolds has attracted the researchers’ attention due to simultaneous use of principles of additive manufacturing and electrohydrodynamic phenomena. In previous research studies, polycaprolactone (PCL) has been mostly used in MEW process. PCL is a biocompatible polymer with characteristics that make it easy to fabricate well-arranged structures using MEW device. However, the... 

    Study & Synthesis of Biocompatible Scaffolds for Animal Cell Cultures

    , M.Sc. Thesis Sharif University of Technology Riazi Esfahani, Bahar (Author) ; Vosoughi, Manouchehr (Supervisor) ; Alemzadeh, Iran (Co-Advisor) ; Pajoum Shariati, Ramin (Co-Advisor)
    Abstract
    Natural tissues of body consist of Extra Cellular Matrix (ECM) and cells. Scaffold produces a temporary matrix for cells and facilitates oxygen and nutrients transport which enhances tissue regeneration. Therefore, attempts in regeneration of tissues and organs by scaffolds attracted great interest in today’s researchs. Choosing scaffold fabrication method and its polymer type, play a key role in scaffold specifications as they determine scaffold properties. In this project electrospinning was chosen as the scaffold fabrication method which is because of the unique properties of scaffolds fabricated by this method and also its ability in producing micro and nano fibers. At first set of... 

    Preparation of Gelatin-Alginate Hydrogel for Using as Cell Culture Scaffold

    , M.Sc. Thesis Sharif University of Technology Fadaodini, Samira (Author) ; Mashayekhan, Shohreh (Supervisor) ; Maghsoudi, Vida (Supervisor)
    Abstract
    Hydrogels are polymeric three-dimensional networks able to swell in the presence of an aqueous medium. Hydrogels from natural proteins and polysaccharides are ideal scaffolds for tissue engineering since they resemble the extracellular matrices of tissue comprised of various amino acids and sugar-based macromolecules.The biocompatible and biodegradable hydrogel scaffolds are promising materials for tissue engineering. Here, we report a new class of hydrogels derived from oxidized alginate (OA) and gelatin. The prepared oxidized alginate was shown to be efficient in crosslinking gelatin, leading to hydrogel formation. The effect of degree of oxidation and concentration of OA on the mechanical... 

    Fabrication of Artificial skin with Electrospun of Nanofiber made of PCL and PVA

    , M.Sc. Thesis Sharif University of Technology Mohseni, Mina (Author) ; Shamloo, Amir (Supervisor) ; Naghdabadi, Reza (Co-Advisor) ; Vosooghi, Manoochehr (Co-Advisor) ; Firoozbakhsh, Keikhosro (Co-Advisor)
    Abstract
    The main goal of this project is to fabricate the scaffolds including Polycaprolactone and Polyvinyle alcohol nanofibers in order to use as artificial skin. For this purpose, electrospinning parameters have been optimized for various injection rates and the scaffolds containing different percent of PCL and PVA have been made. By investigating the cell growth on these scaffolds, the one made up PVA/PCL (30% ) has been introduced as the best scaffold. To improve biological properties of chosen scaffold, a layer of collagen was coated. The angiogenesis capacity has been improved by adding Heparin to PVA nanofibers. Based on assay of heparin release, it was shown that Heparin is released within... 

    Investigating the Optimum Conditions for Cell Growth and Behavior on Hydrogel Surfaces

    , M.Sc. Thesis Sharif University of Technology Hajiabbas, Maryam (Author) ; Mashayekhan, Shohre (Supervisor) ; Maghsudi, Vida (Supervisor)
    Abstract
    Generally, the concept of producing ‘spare parts’ of the body for replacement of damaged or lost organs lies at the core of the varied biotechnological practices referred as tissue engineering. Tissue engineering is an interdisciplinary field that incorporates principles of engineering with the life sciences. Tissue engineering is based on three principle; cells, scaffolds for cells expansion, attachment as an environment like ECM and growth factors. These things together can help tissue engineers to provide microenvironments which are suitable for special cells. The most important thing in this kind of works is the ability to simulate environment for cells the same as body. According to the... 

    Evaluation of Mechanical and Structural Properties of Titanium Bone Scaffolds

    , M.Sc. Thesis Sharif University of Technology Naddaf Dezfuli, Sina (Author) ; Sadrnezhad, Khatiboleslam (Supervisor) ; Shokrgozaar, Mohammad Ali (Co-Supervisor)
    Abstract
    Interconnected–pore titanium scaffolds were fabricated by sintering of compressed mixture of TiH1.924 and urea or NaCl. Urea was removed by evaporation during sintering and NaCl was removed with water. TiH1.924 was used to enhance gas evolution for perpetuation of foam formation. Morphological studies of the spacer-removed scaffolds showed that the spacer shapes were replicated to the pores. Minimization of stress concentration at walls of the pores was, hence, helped by utilization of the spacers with spherical particles. The scaffolds having relative densities of 0.34 to 0.65 consisted pores of 200 to 600 μm diameter, compression strengths of 51 to 260 MPa, Young’s modulus of 6.3 to 22.66...