Loading...
Search for: salinity-effects
0.01 seconds

    Bacteria cell hydrophobicity and interfacial properties relationships: A new MEOR approach

    , Article Colloids and Interfaces ; Volume 5, Issue 4 , 2021 ; 25045377 (ISSN) Ganji Azad, E ; Javadi, A ; Jahanbani Veshareh, M ; Ayatollahi, S ; Miller, R ; Sharif University of Technology
    MDPI  2021
    Abstract
    For microbial enhanced oil recovery (MEOR), different mechanisms have been introduced. In some of these papers, the phenomena and mechanisms related to biosurfactants produced by certain microorganisms were discussed, while others studied the direct impacts of the properties of microorganisms on the related mechanisms. However, there are only very few papers dealing with the direct impacts of microorganisms on interfacial properties. In the present work, the interfacial properties of three bacteria MJ02 (Bacillus Subtilis type), MJ03 (Pseudomonas Aeruginosa type), and RAG1 (Acinetobacter Calcoaceticus type) with the hydrophobicity factors 2, 34, and 79% were studied, along with their direct... 

    The impact of the electrical behavior of oil-brine-rock interfaces on the ionic transport rate in a thin film, hydrodynamic pressure, and low salinity waterflooding effect

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 620 , 2021 ; 09277757 (ISSN) Pourakaberian, A ; Mahani, H ; Niasar, V ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Wettability alteration is the principal low-salinity-effect (LSE) in many oil-brine-rock (OBR) systems. Our recent experimental results have demonstrated that wettability alteration by low salinity is slow. It is expected that the electrical behavior of oil/brine and rock/brine interfaces and the water film geometry control both the transient hydrodynamic pressure, and the time-scale of ionic transport in the film, thus the kinetics and degree of wettability alteration. In this paper, the electro-diffusion process induced by the imposed ionic strength gradient is simulated by solving Poisson-Nernst-Planck equations in a water film bound between two charged surfaces, using a finite...