Loading...
Search for: safety-critical-applications
0.005 seconds

    Classification of activated faults in the flexray-based networks

    , Article Journal of Electronic Testing: Theory and Applications (JETTA) ; Volume 26, Issue 5 , October , 2010 , Pages 535-547 ; 09238174 (ISSN) Sedaghat, Y ; Miremadi, S. G ; Sharif University of Technology
    Abstract
    FlexRay communication protocol is expected to become the de-facto standard for distributed safety-critical systems. This paper classifies the effects of transient single bit-flip fault injections into the FlexRay communication controller. In this protocol, when an injected fault is activated, this may result in one or more error types, i.e.: Boundary violation, Conflict, Content, Freeze, Synchronization, Syntax, and Invalid frame. To study the activated faults, a FlexRay bus network, composed of four nodes, was modeled by Verilog HDL; and a total of 135,600 transient faults was injected in only one node, called the target node. The results show that only 9,342 of the faults (about 6.9%) were... 

    Fault tolerant operation of single-ended non-isolated DC-DC converters under open and short-circuit switch faults

    , Article 2013 15th European Conference on Power Electronics and Applications, EPE 2013 ; 2013 ; ISBN: 9781479901166 Jamshidpour, E ; Shahbazi, M ; Poure, P ; Gholipour, E ; Saadate, S ; Sharif University of Technology
    2013
    Abstract
    Fault tolerant operation of single-ended non-isolated DC-DC converters used in embedded and safety critical applications is mandatory to guaranty service continuity. This paper proposes a new, fast and efficient FPGA-based open and short-circuit switch fault diagnosis asssociated to fault tolerant converter topology. The results of Hardware-In-the-Loop and experimental tests are presented and discussed  

    FTSPM: A fault-tolerant scratchpad memory

    , Article Proceedings of the International Conference on Dependable Systems and Networks ; 2013 , Page(s): 1 - 10 ; 9781467364713 (ISBN) Monazzah, A. M. H ; Farbeh, H ; Miremadi, S. G ; Fazeli, M ; Asadi, H ; Sharif University of Technology
    2013
    Abstract
    Scratch Pad Memory (SPM) is an important part of most modern embedded processors. The use of embedded processors in safety-critical applications implies including fault tolerance in the design of SPM. This paper proposes a method, called FTSPM, which integrates a multi-priority mapping algorithm with a hybrid SPM structure. The proposed structure divides SPM into three parts: 1) a part is equipped with Non-Volatile Memory (NVM) which is immune against soft errors, 2) a part is equipped with Error-Correcting Code, and 3) a part is equipped with parity. The proposed mapping algorithm is responsible to distribute the program blocks among the above three parts with regards to their vulnerability... 

    HAFTA: Highly available fault-tolerant architecture to protect SRAM-based reconfigurable devices against multiple bit upsets

    , Article IEEE Transactions on Device and Materials Reliability ; Volume 13, Issue 1 , November , 2013 , Pages 203-212 ; 15304388 (ISSN) Ghaderi, Z ; Miremadi, S. G ; Asadi, H ; Fazeli, M ; Sharif University of Technology
    2013
    Abstract
    Despite widespread use of SRAM-based reconfigurable devices (SRDs) in mainstream applications, their usage has been very limited in enterprise and safety-critical applications due to SRAM susceptibility to soft errors. Previous mitigation techniques to protect SRDs impose significant area and power overheads. Additionally, they suffer from susceptibility of configuration bits to multiple bit upsets (MBUs). In this paper, we present a highly available fault-tolerant architecture to protect SRD-based designs against MBUs in both configuration and user bits. In the proposed architecture, the entire design is duplicated with respect to the relative locations of logic blocks within the SRD and... 

    ScTMR: A scan chain-based error recovery technique for TMR systems in safety-critical applications

    , Article Proceedings -Design, Automation and Test in Europe, DATE, 14 March 2011 through 18 March 2011 ; March , 2011 , Pages 289-292 ; 15301591 (ISSN) ; 9783981080179 (ISBN) Ebrahimi, M ; Miremadi, S. G ; Asadi, H ; Sharif University of Technology
    2011
    Abstract
    We propose a roll-forward error recovery technique based on multiple scan chains for TMR systems, called Scan chained TMR (ScTMR). ScTMR reuses the scan chain flip-flops employed for testability purposes to restore the correct state of a TMR system in the presence of transient or permanent errors. In the proposed ScTMR technique, we present a voter circuitry to locate the faulty module and a controller circuitry to restore the system to the fault-free state. As a case study, we have implemented the proposed ScTMR technique on an embedded processor, suited for safety-critical applications. Exhaustive fault injection experiments reveal that the proposed architecture has the error detection and... 

    Investigation and reduction of fault sensitivity in the FlexRay communication controller registers

    , Article 27th International Conference on Computer Safety, Reliability, and Security, SAFECOMP 2008, Newcastle upon Tyne, 22 September 2008 through 25 September 2008 ; Volume 5219 LNCS , 2008 , Pages 153-166 ; 03029743 (ISSN); 3540876979 (ISBN); 9783540876977 (ISBN) Sedaghat, Y ; Miremadi, S. G ; Sharif University of Technology
    2008
    Abstract
    It is now widely believed that FlexRay communication protocol will become the de-facto standard for distributed safety-critical automotive systems. In this paper, the fault sensitivity of the FlexRay communication controller registers are investigated using transient single bit-flip fault injection. To do this, a FlexRay bus network, composed of four nodes, was modeled. A total of 135,600 transient single bit-flip faults were injected to all 408 accessible single-bit and multiple-bit registers of the communication controller in one node. The results showed that among all 408 accessible registers, 30 registers were immediately affected by the injected faults. The results also showed that... 

    Critical review on fusion welding of magnesium alloys: metallurgical challenges and opportunities

    , Article Science and Technology of Welding and Joining ; Volume 26, Issue 8 , 2021 , Pages 559-580 ; 13621718 (ISSN) Pouranvari, M ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    As the lightest structural alloys, magnesium alloys offer significant potential for improving the energy efficiency of various transportation systems. The lack of sufficient weldability of Mg alloys is a crucial barrier to their potential use in safety-critical applications. Porosity formation, grain structure engineering, solidification cracking, liquation, and liquation cracking are the key metallurgical challenges to obtain reliable and robust fusion welds in Mg alloys. This critical review highlights the current understating regarding controlling the metallurgical phenomena during fusion welding of Mg alloys and discusses the unresolved metallurgical challenges to shed light on the path... 

    FPGA-based fast detection with reduced sensor count for a fault-tolerant three-phase converter

    , Article IEEE Transactions on Industrial Informatics ; Volume 9, Issue 3 , 2013 , Pages 1343-1350 ; 15513203 (ISSN) Mahmoud, M ; Philippe, P ; Shahrokh, S ; Mohammad Reza, M. R ; Sharif University of Technology
    2013
    Abstract
    Fast fault detection (FD) and reconfiguration is necessary for fault tolerant power electronic converters in safety critical applications to prevent further damage and to make the continuity of service possible. The aim of this study is to minimize the number of the used additional voltage sensors in a fault tolerant three-phase converter. In this paper, first a practical implementation of a very fast FD scheme with reduced sensor number is discussed. Then, an optimization in this scheme is also presented to decrease the detection time. For FD, special time and voltage criterion are applied to observe the error in the estimated phase-to-phase voltages for a specific period of time. The... 

    Open-and short-circuit switch fault diagnosis for nonisolated DC-DC converters using field programmable gate array

    , Article IEEE Transactions on Industrial Electronics ; Volume 60, Issue 9 , October , 2013 , Pages 4136-4146 ; 02780046 (ISSN) Shahbazi, M ; Jamshidpour, E ; Poure, P ; Saadate, S ; Zolghadri, M. R ; Sharif University of Technology
    2013
    Abstract
    Fault detection (FD) in power electronic converters is necessary in embedded and safety critical applications to prevent further damage. Fast FD is a mandatory step in order to make a suitable response to a fault in one of the semiconductor devices. The aim of this study is to present a fast yet robust method for fault diagnosis in nonisolated dc-dc converters. FD is based on time and current criteria which observe the slope of the inductor current over the time. It is realized by using a hybrid structure via coordinated operation of two FD subsystems that work in parallel. No additional sensors, which increase system cost and reduce reliability, are required for this detection method. For... 

    Low-energy standby-sparing for hard real-time systems

    , Article IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems ; Volume 31, Issue 3 , 2012 , Pages 329-342 ; 02780070 (ISSN) Ejlali, A ; Al Hashimi, B. M ; Eles, P ; Sharif University of Technology
    Abstract
    Time-redundancy techniques are commonly used in real-time systems to achieve fault tolerance without incurring high energy overhead. However, reliability requirements of hard real-time systems that are used in safety-critical applications are so stringent that time-redundancy techniques are sometimes unable to achieve them. Standby sparing as a hardware-redundancy technique can be used to meet high reliability requirements of safety-critical applications. However, conventional standby-sparing techniques are not suitable for low-energy hard real-time systems as they either impose considerable energy overheads or are not proper for hard timing constraints. In this paper we provide a technique... 

    A cache-assisted scratchpad memory for multiple-bit-error correction

    , Article IEEE Transactions on Very Large Scale Integration (VLSI) Systems ; Volume 24, Issue 11 , 2016 , Pages 3296-3309 ; 10638210 (ISSN) Farbeh, H ; Sadat Mirzadeh, N ; Farhady Ghalaty, N ; Miremadi, S. G ; Fazeli, M ; Asadi, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    Scratchpad memory (SPM) is widely used in modern embedded processors to overcome the limitations of cache memory. The high vulnerability of SPM to soft errors, however, limits its usage in safety-critical applications. This paper proposes an efficient fault-tolerant scheme, called cache-assisted duplicated SPM (CADS), to protect SPM against soft errors. The main aim of CADS is to utilize cache memory to provide a replica for SPM lines. Using cache memory, CADS is able to guarantee a full duplication of all SPM lines. We also further enhance the proposed scheme by presenting buffered CADS (BCADS) that significantly improves the CADS energy efficiency. BCADS is compared with two well-known... 

    Categorizing and analysis of activated faults in the flexray communication controller registers

    , Article Proceedings of the 14th IEEE European Test Symposium, ETS 2009, 25 May 2009 through 29 May 2009, Sevilla ; 2009 , Pages 121-126 ; 9780769537030 (ISBN) Sedaghat, Y ; Miremadi, G ; Sharif University of Technology
    2009
    Abstract
    FlexRay communication protocol is expected becoming the de-facto standard for distributed safetycritical systems. In this paper, transient single bit-flip faults were injected into the FlexRay communication controller to categorize and analyze the activatedfaults. In this protocol, an activated fault results in one or more error types which are Boundary violation, Conflict, Content, Freeze, Synchronization, and Syntax. To study the activated faults, a FlexRay bus network, composed of four nodes, was modeled by Verilog HDL; and a total of 135,600 transient faults were injected in only one node, where 9,342 (6.9%) of the faults were activated. The results show that the Synchronization error is... 

    An efficient SRAM-Based reconfigurable architecture for embedded processors

    , Article IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems ; Volume 38, Issue 3 , 2019 , Pages 466-479 ; 02780070 (ISSN) Tamimi, S ; Ebrahimi, Z ; Khaleghi, B ; Asadi, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Nowadays, embedded processors are widely used in wide range of domains from low-power to safety-critical applications. By providing prominent features such as variant peripheral support and flexibility to partial or major design modifications, field-programmable gate arrays (FPGAs) are commonly used to implement either an entire embedded system or a hardware description language-based processor, known as soft-core processor. FPGA-based designs, however, suffer from high power consumption, large die area, and low performance that hinders common use of soft-core processors in low-power embedded systems. In this paper, we present an efficient reconfigurable architecture to implement soft-core... 

    Enhanced resistance to liquation cracking during fusion welding of cast magnesium alloys: Microstructure tailoring via friction stir processing pre-weld treatment

    , Article Materials Science and Engineering A ; Volume 798 , 2020 Sharahi, H. J ; Pouranvari, M ; Movahedi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Magnesium alloys provide critical opportunities for energy and lightweight-materials challenges. The alloy design approach based on utilizing the second phase strengthening mechanism plays an essential role in producing low-density high strength Mg-based alloys. However, the second phase in the microstructure (e.g., Mg17Al12 phase in Mg–Al–Zn alloys) can deleteriously affect the weldability of the metallic materials by promoting the liquation and liquation cracking during fusion welding. The lack of sufficient weldability of Mg-based alloys is a crucial barrier to their potential use in safety-critical applications. In this paper, it is shown that the severe plastic deformation induced by... 

    Strengthening and ductilization mechanisms of friction stir processed cast Mg–Al–Zn alloy

    , Article Materials Science and Engineering A ; Volume 781 , 2020 Jiryaei Sharahi, H ; Pouranvari, M ; Movahedi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    AZ91 alloy, the most widely used Mg casting alloy, exhibits low strength/ductility and weak energy absorption, which is a function of its large grain size and the presence of a coarse and continuous network of β-Mg17Al12 intermetallic compounds. This work demonstrated that friction stir processing (FSP) enables enhancement of strength and energy absorption capability of AZ91 alloy. The influence of FSP treatment on various potential strengthening mechanisms, including grain boundary, solid solution, and sub-micron particle strengthening mechanisms, was studied. It is identified that the grain boundary strengthening plays a significant contribution to the strength of the FSP treated AZ91. FSP... 

    A standby-sparing technique with low energy-overhead for fault-tolerant hard real-time systems

    , Article Embedded Systems Week 2009 - 7th IEEE/ACM International Conference on Hardware/Software-Co-Design and System Synthesis ; 2009 , Pages 193-202 ; 9781605586281 (ISBN) Ejlali, A ; Al Hashimi, B. M ; Eles, P ; Sharif University of Technology
    Abstract
    Time redundancy (rollback-recovery) and hardware redundancy are commonly used in real-time systems to achieve fault tolerance. From an energy consumption point of view, time redundancy is generally more preferable than hardware redundancy. However, hard real-time systems often use hardware redundancy to meet high reliability requirements of safety-critical applications. In this paper we propose a hardware-redundancy technique with low energy-overhead for hard real-time systems. The proposed technique is based on standby-sparing, where the system is composed of a primary unit and a spare. Through analytical models, we have developed an online energy-management method which uses a slack...