Loading...
Search for: s-systems
0.006 seconds

    Molecular dynamics simulation and MM-PBSA calculations of sickle cell hemoglobin in dimer form with Val, Trp, or Phe at the lateral contact

    , Article Journal of Physical Organic Chemistry ; Volume 23, Issue 9 , March , 2010 , Pages 866-877 ; 08943230 (ISSN) Abroshan, H ; Akbarzadeh, H ; Parsafar, G. A ; Sharif University of Technology
    Abstract
    As the delay time and hence nuclei formation play a crucial role in the pathophysiology of sickle cell disease, MD simulation and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) calculations have been performed on three systems of hemoglobin; namely dimer of hemoglobin with valine (Hb S), tryptophan (Hbβ6W), and phenylalanine (Hbβ6F) at β6 position. The structural changes due to these aromatic substitutions are investigated. It is shown that β subunits have significant impact on the differences between a dimer and other crystal structures. Transition from a dimer to polymer for Hb S system affects the donor molecule more than that of the acceptor. In the case of donor and... 

    Adaptive chaos synchronization in Chua's systems with noisy parameters

    , Article Mathematics and Computers in Simulation ; Volume 79, Issue 3 , December , 2008 , Pages 233-241 ; 03784754 (ISSN) Salarieh, H ; Alasty, A ; Sharif University of Technology
    2008
    Abstract
    Using the Lyapunov stability theory an adaptive control is proposed for chaos synchronization between two Chua systems which have stochastically time varying unknown coefficients. The stochastic variations of the coefficients around their unknown mean values are modeled through Gaussian white noise produced by the Wiener process. It is shown that using the proposed adaptive control the mean square of synchronization error converges to an arbitrarily small bound around zero depending on the controller feedback gain. Simulation results indicate that the proposed adaptive controller has a high performance in synchronization of chaotic Chua circuits in noisy environment. © 2007 IMACS