Loading...
Search for: root-mean-squared-error
0.009 seconds
Total 49 records

    Evaluation of FT-IR spectroscopy combined with SIMCA and PLS‑DA for detection of adulterants in pistachio butter

    , Article Infrared Physics and Technology ; Volume 127 , 2022 ; 13504495 (ISSN) Khanban, F ; Bagheri Garmarudi, A ; Parastar, H ; Toth, G ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    This work scrutinized the adulteration of pistachio butter with three potential edible oils using Fourier transform infrared spectroscopy (FT-IR) and multivariate classification methods. Each of the classes, including non-adulterated samples and adulterated samples consisting of pistachio butter mixed with various concentrations of peanut oil, corn oil and sunflower oil, were classified. For this purpose, multivariate methods, including soft independent modeling of class analogy (SIMCA) and partial least squares discriminant analysis (PLS-DA), were applied to classify the FTIR data. After evaluating the model on unknown samples, the results indicated that PLS-DA was better than the SIMCA... 

    Prediction of standard enthalpy of combustion of pure compounds using a very accurate group-contribution-based method

    , Article Energy and Fuels ; Volume 25, Issue 6 , April , 2011 , Pages 2651-2654 ; 08870624 (ISSN) Gharagheizi, F ; Mirkhani, S. A ; Tofangchi Mahyari, A. R ; Sharif University of Technology
    2011
    Abstract
    The artificial neural network-group contribution (ANN-GC) method is applied to estimate the standard enthalpy of combustion of pure chemical compounds. A total of 4590 pure compounds from various chemical families are investigated to propose a comprehensive and predictive model. The obtained results show the squared correlation coefficient (R 2) of 0.999 99, root mean square error of 12.57 kJ/mol, and average absolute deviation lower than 0.16% for the estimated properties from existing experimental values  

    Prediction of Protein Ligand Binding Affinity Using Deep Networks

    , M.Sc. Thesis Sharif University of Technology Gholamzadeh Lanjavi, Atena (Author) ; Kalhor, Hamid Reza (Supervisor) ; Motahhari, Abolfazl (Co-Supervisor)
    Abstract
    Protein-ligand binding affinity is extremely important for finding new candidates in drug discovery and computational biochemistry. One of the physical characteristics for protein ligand interactions has been dissociation constant (KD) which can be obtain experimentally. However, there have been tremendous efforts to predict KD using modeling and computational approaches for protein-ligand interactions. In this project, we have exploited Convolutional Neural Network (CNN) model based on KDeep design, PDBBind version 2016 refined set training data, and examining it with KDeep core set test data. In order to modify KDeep,instead of 24 rotations (0, 90, 180 and 270 degrees in selection of two... 

    Prediction of reaction force on external indenter in cell injection experiment using support vector machine technique

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 2 , 2012 , Pages 537-543 ; 9780791845189 (ISBN) Abbasi, A. A ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    Evaluation of the reaction force on a tool which is used for exertion of force on biomaterials such as biological cells or soft tissues has applications in virtual reality based medical simulators or haptic tools. In this study, two least square based support vector machine (SVM) models have been constructed to predict the indentation or reaction force on mouse oocyte and embryo cells in cell injection experiment. Inputs of these two models are geometrical parameters of indented cell, namely dimple radius (a), dimple depth (w) and radius of the semicircular curve (R). Experimental data for calibration and prediction of the models have been captured from literatures. The performance of the... 

    A meshless method to simulate interactions between large soft tissue and a surgical grasper

    , Article Scientia Iranica ; Volume 23, Issue 1 , 2016 , Pages 295-300 ; 10263098 (ISSN) Saghaei Nooshabadi, Z ; Abdi, E ; Farahmand, F ; Narimani, R ; Chizari, M ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    Realistic simulation of tool-tissue interactions can help to develop more effective surgical training systems and simulators. This study uses a finite element and meshless modeling approach to simulate the grasping procedure of a large intra-abdominal organ, i.e. a kidney, during laparoscopic surgery. Results indicate that the accuracy of the meshless method is comparable with that of the finite element method, with root mean square errors in the range of 0.8 to 2.3 mm in different directions. For the model presented in this study, the computational cost of the meshless method was much less than that of the finite element model  

    Digital quantum estimation

    , Article Physical Review Letters ; Volume 119, Issue 20 , 2017 ; 00319007 (ISSN) Hassani, M ; Macchiavello, C ; Maccone, L ; Sharif University of Technology
    Abstract
    Quantum metrology calculates the ultimate precision of all estimation strategies, measuring what is their root-mean-square error (RMSE) and their Fisher information. Here, instead, we ask how many bits of the parameter we can recover; namely, we derive an information-theoretic quantum metrology. In this setting, we redefine "Heisenberg bound" and "standard quantum limit" (the usual benchmarks in the quantum estimation theory) and show that the former can be attained only by sequential strategies or parallel strategies that employ entanglement among probes, whereas parallel-separable strategies are limited by the latter. We highlight the differences between this setting and the RMSE-based... 

    Fabrication, characterization, and error mitigation of non-flat sun sensor

    , Article Sensors and Actuators, A: Physical ; Volume 261 , 2017 , Pages 243-251 ; 09244247 (ISSN) Yousefian, P ; Durali, M ; Rashidian, B ; Jalali, M. A ; Sharif University of Technology
    Abstract
    We report the design, fabrication and error analysis of a sun sensor array composed of six photodiodes. The sensor estimates the direction of the sun using a linear least squares method. The performance of the sensor is deteriorated by three major sources: fabrication errors, scattered environmental light, and inexact modeling of photodiodes. Using a calibration procedure and modeling the uniform component of the environmental light, we mitigate the first two errors and significantly reduce root mean squared error from 2.63° to 0.83°. For a Field of View (FOV) of 110°, the maximum estimation error also drops from 3.8° to 1.6°. Through exact mathematical modeling of photodiodes, we... 

    Quantitative evaluation of parameters affecting the accuracy of Microsoft Kinect in GAIT analysis

    , Article 2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering, ICBME 2016, 23 November 2016 through 25 November 2016 ; 2017 , Pages 306-311 ; 9781509034529 (ISBN) Jamali, Z ; Behzadipour, S ; Sharif University of Technology
    Abstract
    To date various commercial systems have been used in the GAIT analysis. These systems have some difficulties for clinical use, such as interfering with normal movement and high prices. The possibility of utilization of Kinect as a sensor for GAIT analysis has been studied in this research. The accuracy of Kinect in calculation of GAIT parameters such as lower limb joint angles, stride time, and stride length were computed during normal walking. The effects of the sensor's position and direction relative to the walkway were also investigated. The Kinect sensor was installed at different positions toward the motion path. In each position the data was recorded by both Kinect and a commercial... 

    A combined passive and active musculoskeletal model study to estimate L4-L5 load sharing

    , Article Journal of Biomechanics ; 2017 ; 00219290 (ISSN) Azari, F ; Arjmand, N ; Shirazi Adl, A ; Rahimi Moghaddam, T ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    A number of geometrically-detailed passive finite element (FE) models of the lumbar spine have been developed and validated under in vitro loading conditions. These models are devoid of muscles and thus cannot be directly used to simulate in vivo loading conditions acting on the lumbar joint structures or spinal implants. Gravity loads and muscle forces estimated by a trunk musculoskeletal (MS) model under twelve static activities were applied to a passive FE model of the L4-L5 segment to estimate load sharing among the joint structures (disc, ligaments, and facets) under simulated in vivo loading conditions. An equivalent follower (FL), that generates IDP equal to that generated by muscle... 

    A combined passive and active musculoskeletal model study to estimate L4-L5 load sharing

    , Article Journal of Biomechanics ; Volume 70 , March , 2018 , Pages 157-165 ; 00219290 (ISSN) Azari, F ; Arjmand, N ; Shirazi Adl, A ; Rahimi Moghaddam, T ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    A number of geometrically-detailed passive finite element (FE) models of the lumbar spine have been developed and validated under in vitro loading conditions. These models are devoid of muscles and thus cannot be directly used to simulate in vivo loading conditions acting on the lumbar joint structures or spinal implants. Gravity loads and muscle forces estimated by a trunk musculoskeletal (MS) model under twelve static activities were applied to a passive FE model of the L4-L5 segment to estimate load sharing among the joint structures (disc, ligaments, and facets) under simulated in vivo loading conditions. An equivalent follower (FL), that generates IDP equal to that generated by muscle... 

    Wideband two dimensional interferometric direction finding algorithm using base-triangles and a proposed minimum planar array

    , Article AEU - International Journal of Electronics and Communications ; Volume 105 , 2019 , Pages 163-170 ; 14348411 (ISSN) Mollai, S ; Farzaneh, F ; Sharif University of Technology
    Elsevier GmbH  2019
    Abstract
    In wideband interferometric direction finding ambiguity is inevitable due to practical antenna array dimensions. A new algorithm for wideband interferometer direction finding is developed to resolve the ambiguity problem with minimum number of antennas. The method is based on direction finding by three antennas arranged at the three vertices of a triangle named the base-triangle. A two dimensional matrix of ambiguous angles is generated. The ambiguity problem is resolved by an auxiliary base-triangle formed by a fourth antenna in the arrangement. The common angle between the two ambiguous directions derived from the two base-triangles, is the desired angle. As such a four antenna array is... 

    Continuous emotion recognition during music listening using EEG signals: A fuzzy parallel cascades model

    , Article Applied Soft Computing ; Volume 101 , 2021 ; 15684946 (ISSN) Hasanzadeh, F ; Annabestani, M ; Moghimi, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    A controversial issue in artificial intelligence is human emotion recognition. This paper presents a fuzzy parallel cascades (FPC) model for predicting the continuous subjective emotional appraisal of music by time-varying spectral content of electroencephalogram (EEG) signals. The EEG, along with an emotional appraisal of 15 subjects, was recorded during listening to seven musical excerpts. The emotional appraisement was recorded along the valence and arousal emotional axes as a continuous signal. The FPC model was composed of parallel cascades with each cascade containing a fuzzy logic-based system. The FPC model performance was evaluated using linear regression (LR), support vector... 

    Application of unmanned aerial vehicle Dem in flood modeling and comparison with global dems: case study of atrak river basin, Iran

    , Article Journal of Environmental Management ; Volume 317 , 2022 ; 03014797 (ISSN) Parizi, E ; Khojeh, S ; Hosseini, S. M ; Jouybari Moghadam, Y ; Sharif University of Technology
    Academic Press  2022
    Abstract
    Digital Elevation Models (DEMs) play a significant role in hydraulic modeling and flood risk management. This study initially investigated the effect of Unmanned Aerial Vehicle (UAV) DEM resolutions, ranging from 1 m to 30 m, on flood characteristics, including the inundation area, mean flow depth, and mean flow velocity. Then, the errors of flood characteristics for global DEMs, comprising ALOS (30 m), ASTER (30 m), SRTM (30 m), and TDX (12 m) were quantified using UAV DEM measurements. For these purposes, the HEC-RAS 2D model in steady-state conditions was used to simulate the flood with return periods of 5- to 200 years along 20 km reach of Atrak River located in northeastern Iran.... 

    Non-coherent DOA Estimation Via Majorization-Minimization Using Sign Information

    , M.Sc. Thesis Sharif University of Technology Delbari, Mohamad Reza (Author) ; Marvasti, Farrokh (Supervisor)
    Abstract
    Direction of arrival (DOA) estimation has various applications in different areas such as wireless communication and signal processing in medical applications. Most of the previous methods were not based on digitalization, but the advantages of digitalized methods have been proved in recent decades. Furthermore, because of existing the phase error, we need to use the algorithms to find the solution with amplitude measurements. A solution method to this problem was introduced in 2015 for the first time, and then newer algorithms were proposed. However, most of them need reference signals to resolve the inherent ambiguity of the problem. By contrast, this dissertation not only does not use... 

    Design and Fabrication of Amotorized Walker with Sit-to-Stand Ability

    , M.Sc. Thesis Sharif University of Technology Kousha, Ebrahim (Author) ; Farahmand, Farzam (Supervisor) ; Durali, Mohammad (Supervisor) ; Ahmadi Bani, Monireh (Co-Supervisor)
    Abstract
    The purpose of this project is to design and build a motorized walker with sit to stand ability, by means of which the user can get up from a chair or the edge of the bed and stand with complete independence; Relying on it, the patient could walk easily and finally sit down on the chair, the edge of the bed, or the toilet seat. For this purpose, the conducted researches and previously built devices were studied and the strengths and weaknesses of each were examined. The stages of conceptual design including the design of the sit to stand mechanism, the design of the structure and finally the control algorithm were completed, then the detailed design of the mentioned topics was carried out.... 

    Predicting Charpy impact energy of Al6061/SiCp laminated nanocomposites in crack divider and crack arrester forms

    , Article Ceramics International ; Volume 39, Issue 6 , 2013 , Pages 6099-6106 ; 02728842 (ISSN) Pouraliakbar, H ; Nazari, A ; Fataei, P ; Livary, A. K ; Jandaghi, M ; Sharif University of Technology
    2013
    Abstract
    Charpy impact energy of the produced Al6061-SiCp laminated nanocomposites by mechanical alloying was modeled by adaptive neuro-fuzzy interfacial systems (ANFIS) in both crack divider and crack arrester configurations. The model was constructed by training, validating and testing of 171 gathered input-target data. The thickness of layers, the number of layers, the adhesive type, the crack tip configuration and the content of SiC nanoparticles were five independent input parameters utilized for modeling. The output parameter was Charpy impact energy of the nanocomposites. The performance of the proposed models was evaluated by absolute fraction of variance, the absolute percentage error and... 

    Formulation of soil angle of shearing resistance using a hybrid GP and OLS method

    , Article Engineering with Computers ; Volume 29, Issue 1 , September , 2013 , Pages 37-53 ; 01770667 (ISSN) Mousavi, S. M ; Alavi, A.H ; Mollahasani, A ; Gandomi, A. H ; Arab Esmaeili, M ; Sharif University of Technology
    2013
    Abstract
    In the present study, a prediction model was derived for the effective angle of shearing resistance (φ′) of soils using a novel hybrid method coupling genetic programming (GP) and orthogonal least squares algorithm (OLS). The proposed nonlinear model relates φ′ to the basic soil physical properties. A comprehensive experimental database of consolidated-drained triaxial tests was used to develop the model. Traditional GP and least square regression analyses were performed to benchmark the GP/OLS model against classical approaches. Validity of the model was verified using a part of laboratory data that were not involved in the calibration process. The statistical measures of correlation... 

    Detection of addition of barley to coffee using near infrared spectroscopy and chemometric techniques

    , Article Talanta ; Volume 99 , 2012 , Pages 175-179 ; 00399140 (ISSN) Ebrahimi Najafabadi, H ; Leardi, R ; Oliveri, P ; Chiara Casolino, M ; Jalali Heravi, M ; Lanteri, S ; Sharif University of Technology
    Elsevier  2012
    Abstract
    The current study presents an application of near infrared spectroscopy for identification and quantification of the fraudulent addition of barley in roasted and ground coffee samples. Nine different types of coffee including pure Arabica, Robusta and mixtures of them at different roasting degrees were blended with four types of barley. The blending degrees were between 2 and 20 wt% of barley. D-optimal design was applied to select 100 and 30 experiments to be used as calibration and test set, respectively. Partial least squares regression (PLS) was employed to build the models aimed at predicting the amounts of barley in coffee samples. In order to obtain simplified models, taking into... 

    An improved sales forecasting approach by the integration of genetic fuzzy systems and data clustering: Case study of printed circuit board

    , Article Expert Systems with Applications ; Volume 38, Issue 8 , August , 2011 , Pages 9392-9399 ; 09574174 (ISSN) Hadavandi, E ; Shavandi, H ; Ghanbari, A ; Sharif University of Technology
    2011
    Abstract
    Success in forecasting and analyzing sales for given goods or services can mean the difference between profit and loss for an accounting period and, ultimately, the success or failure of the business itself. Therefore, reliable prediction of sales becomes a very important task. This article presents a novel sales forecasting approach by the integration of genetic fuzzy systems (GFS) and data clustering to construct a sales forecasting expert system. At first, all records of data are categorized into k clusters by using the K-means model. Then, all clusters will be fed into independent GFS models with the ability of rule base extraction and data base tuning. In order to evaluate our K-means... 

    Computational-based approach for predicting porosity of electrospun nanofiber mats using response surface methodology and artificial neural network methods

    , Article Journal of Macromolecular Science, Part B: Physics ; Volume 54, Issue 11 , 2015 , Pages 1404-1425 ; 00222348 (ISSN) Hadavi Moghadam, B ; Khodaparast Haghi, A ; Kasaei, S ; Hasanzadeh, M ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    Comparative studies between response surface methodology (RSM) and artificial neural network (ANN) methods to find the effects of electrospinning parameters on the porosity of nanofiber mats is described. The four important electrospinning parameters studied included solution concentration (wt.%), applied voltage (kV), spinning distance (cm) and volume flow rate (mL/h). It was found that the applied voltage and solution concentration are the two critical parameters affecting the porosity of the nanofiber mats. The two approaches were compared for their modeling and optimization capabilities with the modeling capability of RSM showing superiority over ANN, having comparatively lower values of...