Loading...
Search for: rf-sputtering
0.008 seconds

    Optimization of a/b-axis regions of YBCO thin film for sensor applications

    , Article Proceedings of the National Academy of Sciences India Section A - Physical Sciences ; Volume 88, Issue 4 , 2018 , Pages 625-628 ; 03698203 (ISSN) Foroughi Abari, F ; Hosseini, M ; Fardmanesh, M ; Sharif University of Technology
    Springer  2018
    Abstract
    The effect of substrate temperature on epitaxial growth of Y1Ba2Cu3O7−x film deposited on (100) crystalline lanthanum aluminate (LAO) substrates by RF Sputtering method has been investigated. The crystal mismatch between film and substrate is about 1.6%. The sputtering was carried out in vacuum with base pressure better than 10−5 Torr and 10/20 Pa oxygen/argon partial pressures. Substrate temperature at this condition is about 730 °C based on Bormann–Hammond diagram. As well known, because of the small lattice mismatch between YBCO and LAO, fabricated thin films are not perfectly c-axis and there is tendency to form a/b-axis regions in the film. Due to substantial effects of the density and... 

    Fabrication localized surface plasmon resonance sensor chip of gold nanoparticles and detection lipase-osmolytes interaction

    , Article Applied Surface Science ; Vol. 314, issue , 2014 , Pages 138-144 ; ISSN: 01694332 Ghodselahi, T ; Hoornam, S ; Vesaghi, M. A ; Ranjbar, B ; Azizi, A ; Mobasheri, H ; Sharif University of Technology
    Abstract
    Co-deposition of RF-sputtering and RF-PECVD from acetylene gas and Au target were used to prepare sensor chip of gold nanoparticles (Au NPs). Deposition conditions were optimized to reach a Localized Surface Plasmon Resonance (LSPR) sensor chip of Au NPs with particle size less than 10 nm. The RF power was set at 180 W and the initial gas pressure was set at 0.035 mbar. Transmission Electron Microscopy (TEM) images and Atomic Force Microscopy (AFM) data were used to investigate particles size and surface morphology of LSPR sensor chip. The Au and C content of the LSPR sensor chip of Au NPs was obtained from X-ray photoelectron spectroscopy (XPS). The hydrogenated amorphous carbon (a-C:H)... 

    CO gas sensor properties of Cu@CuO core-shell nanoparticles based on localized surface plasmon resonance

    , Article Journal of Physical Chemistry C ; Volume 115, Issue 45 , 2011 , Pages 22126-22130 ; 19327447 (ISSN) Ghodselahi, T ; Zahrabi, H ; Saani, M. H ; Vesaghi, M. A ; Sharif University of Technology
    2011
    Abstract
    Hexagonal array of Cu@CuO core-shell nanoparticles (NPs) on the a-C:H thin film was prepared by codeposition of RF-sputtering and RF-PECVD. The trace of hexagonal NPs supperlattice was recognized by AFM image and XRD result. On the basis of localized surface plasmon resonance (LSPR) of core-shell NPs, the prepared array detected a low flow rate of CO gas at room temperature. XPS results indicate that the surface of Cu@CuO core-shell NPs have no chemical reaction with CO molecule. The physical absorption of CO molecule on the surface of Cu@CuO core-shell NPs increases the LSPR absorbance and causes a red shift in LSPR wavelength. These experimental results are in agreement with Mie theory... 

    The effects of thickness on magnetic properties of FeCuNbSiB sputtered thin films

    , Article Scientia Iranica ; Volume 24, Issue 6 , 2017 , Pages 3521-3525 ; 10263098 (ISSN) Shivaee, H. A ; Celegato, F ; Tiberto, P ; Castellero, A ; Baricco, M ; Hosseini, H. R. M ; Sharif University of Technology
    Abstract
    Thin films of Fe73.1Cu1Nb3.1Si14.7B8.2 alloy with 200, 500, and 800 nm thicknesses have been deposited by RF sputtering. Their magnetic properties have been characterized using Alternating Gradient Field Magnetometer (AGFM) and Vibrating Sample Magnetometer (VSM). The effects of residual stresses investigated by nanoindentation experiments were conducted on the as-deposited samples. It is observed that the coercivity of as-deposited films is inversely proportional to the thickness in relation with the residual stress induced during sputtering. © 2017 Sharif University of Technology. All rights reserved  

    Localized surface plasmon resonance of Cu@Cu2O coreshell nanoparticles: Absorption, scattering and luminescence

    , Article Physica B: Condensed Matter ; Volume 406, Issue 13 , July , 2011 , Pages 2678-2683 ; 09214526 (ISSN) Ghodselahi, T ; Vesaghi, M. A ; Sharif University of Technology
    2011
    Abstract
    By co-deposition via RF-Sputtering and RF-PECVD methods and using Cu target and acetylene gas, we prepared Cu@Cu2O coreshell nanoparticles on the a-C:H thin film at room temperature. Mie absorption of Cu cores, scattering from Cu2O shell and luminescence that rises from carrier transfer in Cu@Cu2O interface were employed to fit the whole range of visible extinction spectrum of these coreshells. From simulation it was found that scattering and luminescence have an important effect on the energy, width and shape of LSPR absorption peak. Shift of LSPR peak is more affected by the dielectric coefficient of shell than Cu core size particularly for Cu core diameter above 4 nm. Also, the LSPR... 

    Metal-nonmetal transition in the copper-carbon nanocomposite films

    , Article Physica B: Condensed Matter ; Volume 405, Issue 18 , Jan , 2010 , Pages 3949-3951 ; 09214526 (ISSN) Ghodselahi, T ; Vesaghi, M. A ; Shafiekhani, A ; Ahmadi, M ; Panahandeh, M ; Heidari Saani, M ; Sharif University of Technology
    2010
    Abstract
    We prepared Cu nanoparticles in a-C:H thin films by co-deposition of RF-sputtering and RF-PECVD methods at room temperature. By increasing Cu content in these films a nonmetalmetal (NM) transition is observed. This transition is explainable by the power law of percolation theory. The critical metal content is obtained 56% and the critical exponent is obtained 1.6, which is larger than the exponent for 2 dimension systems and smaller than the one for 3 dimension systems. The electrical conductivity of dielectric samples was explained by tunneling. Activation tunneling energy that was obtained from temperature dependence of electrical resistivity correlates with near infrared absorption peak... 

    Morphology, optical and electrical properties of Cu-Ni nanoparticles in a-C:H prepared by co-deposition of RF-sputtering and RF-PECVD

    , Article Applied Surface Science ; Volume 258, Issue 2 , 2011 , Pages 727-731 ; 01694332 (ISSN) Ghodselahi, T ; Vesaghi, M. A ; Gelali, A ; Zahrabi, H ; Solaymani, S ; Sharif University of Technology
    Abstract
    We report optical and electrical properties of Cu-Ni nanoparticles in hydrogenated amorphous carbon (Cu-Ni NPs @ a-C:H) with different surface morphology. Ni NPs with layer thicknesses of 5, 10 and 15 nm over Cu NPs @ a-C:H were prepared by co-deposition of RF-sputtering and RF-Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) from acetylene gas and Cu and Ni targets. A nonmetal-metal transition was observed as the thickness of Ni over layer increases. The surface morphology of the sample was described by a two dimensional (2D) Gaussian self-affine fractal, except the sample with 10 nm thickness of Ni over layer, which is in the nonmetal-metal transition region. X-ray diffraction profile... 

    Optical and electrical properties of the copper-carbon nanocomposites

    , Article Nanophotonics II, Strasbourg, 7 April 2008 through 9 April 2008 ; Volume 6988 , 2008 ; 0277786X (ISSN); 9780819471864 (ISBN) Ghodselahi, T ; Vesaghi, M. A ; Shafiekhani, A ; Ahmadi, M ; Sharif University of Technology
    2008
    Abstract
    We prepared copper-carbon nanocomposite films by co-deposition of RF-Sputtering and RF-PECVD methods at room temperature. These films contain different copper concentration and different size of copper nanoparticles. The copper content of these films was obtained from Rutherford Back Scattering (RBS) analyze. We studied electrical resistivity of samples versus copper content. A metal-nonmetal transition was observed by decreasing of copper content in these films. The electrical conductivity of dielectric and metallic samples was explained by tunneling and percolation models respectively. In the percolation threshold conduction results from two mechanisms: percolation and tunneling. In the...