Loading...
Search for: reformer-gas
0.009 seconds

    Homogeneous Charge Compression Ignition (HCCI) Combustion Simulation using a Multi-Zone Chemical kinetics Model

    , M.Sc. Thesis Sharif University of Technology Voshtani, Sina (Author) ; Hosseini, Vahid (Supervisor)
    Abstract
    In recent years, the idea of Homogenous charge compression ignition (HCCI) engines has been in the center of attention as a new generation of internal combustion engines. Intense decrease in pollutant emission rate like NOx, low fuel consumption and high thermal efficiency are the main reasons of why these engines are in center of attention, however, some drawbacks, which the main one combustion control which happens in limited operation range between knock and misfiring has limited the use of these engines. Hence approaches like adding synthesis gas, using exhaust gas recirculation, controling effective comperession ratio by using variable valve timing, changing the input conditions... 

    Investigating various effects of reformer gas enrichment on a natural gas-fueled HCCI combustion engine

    , Article International Journal of Hydrogen Energy ; Vol. 39, issue. 34 , November , 2014 , p. 19799-19809 Voshtani, S ; Reyhanian, M ; Ehteram, M ; Hosseini, V ; Sharif University of Technology
    Abstract
    Homogenous charge compression ignition (HCCI) combustion has the potential to work with high thermal efficiency, low fuel consumption, and extremely low NOx-PM emissions. In this study, zero-dimensional single-zone and quasi-dimensional multi-zone detailed chemical kinetics models were developed to predict and control an HCCI combustion engine fueled with a natural gas and reformer gas (RG) blend. The model was validated through experiments performed with a modified single-cylinder CFR engine. Both models were able to acceptably predict combustion initiation. The result shows that the chemical and thermodynamic effects of RG blending advance the start of combustion (SOC), whereas dilution... 

    Investigation of the effect of reformer gas on PRFs HCCI combustion based on exergy analysis

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 7 , 2016 , Pages 4278-4295 ; 03603199 (ISSN) Neshat, E ; Saray, R. K ; Hosseini, V ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Lack of a direct method to control combustion timing is one of the main disadvantages of homogeneous charge compression ignition (HCCI) engines. Fuel blending, in which two fuels with different auto-ignition characteristics are blended, can be used to control combustion timing. Utilizing different additives is another method for HCCI combustion control. The aim of this research is investigation on the effect of reformer gas addition on the availability terms in HCCI engines fueled with primary reference fuels (PRFs). A multi zone model (MZM) coupled with a semi detailed chemical kinetics mechanism is used for calculation of different terms of exergy analysis. Heat and mass transfer between... 

    Effect of reformer gas blending on homogeneous charge compression ignition combustion of primary reference fuels using multi zone model and semi detailed chemical-kinetic mechanism

    , Article Applied Energy ; Volume 179 , 2016 , Pages 463-478 ; 03062619 (ISSN) Neshat, E ; KhoshbakhtiSaraya Saray, R ; Hosseini, V ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    This study mainly aims to investigate the effect of reformer gas (RG) addition on the performance of homogeneous charge compression ignition (HCCI) engines using a multi zone model. The developed model is validated using a wide range of experimental data of a cooperative fuel research engine. Blended fuels of isooctane and n-heptane, known as primary reference fuels, with different octane numbers are used as the main engine fuel. A semi detailed chemical-kinetic mechanism containing 101 species and 594 reactions is used to simulate the combustion of blended fuels. The study is performed with different percentages of RG (0–30%). The results show that RG reduces the rate of some H abstraction... 

    Various effects of reformer gas enrichment on natural-gas, iso-octane and normal-heptane HCCI combustion using artificial inert species method

    , Article Energy Conversion and Management ; Volume 159 , March , 2018 , Pages 7-19 ; 01968904 (ISSN) Reyhanian, M ; Hosseini, V ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Reformer gas (syngas) addition to main fuel is a practical solution for combustion timing control in HCCI engines. This study emphasizes the understanding of various effects of reformer gas (RG) addition, with composition of 75%vol H2 and 25%vol CO, in HCCI combustion by developing an artificial inert species method and using a detailed chemical kinetics multi-zone model. Three fuels (iso-octane, n-heptane, and natural gas) with different autoignition characteristics were used in this study. The developed multi-zone model was validated for mentioned fuels at various percentages of RG using six experimental cases of a single-cylinder CFR engine. The results showed that increasing reformer gas...