Loading...
Search for: realistic-simulation
0.005 seconds

    Analysis of gyro noise in non-linear attitude estimation using a single vector measurement

    , Article IET Control Theory and Applications ; Volume 6, Issue 14 , 2012 , Pages 2226-2234 ; 17518644 (ISSN) Firoozi, D ; Namvar, M ; Sharif University of Technology
    IET  2012
    Abstract
    This study investigates the effect of noisy measurements of the angular rate in a non-linear attitude estimator for satellites. The attitude estimator uses measurement of a single attitude sensor such as Sun, Earth-horizon, star tracker or magnetometer together with a rate gyro, and guarantees exponential convergence of the attitude estimation error to zero under a no-noise condition. In view of a realistic situation where the presence of noise in gyro measurement is not negligible, this study presents stochastic and deterministic upper bounds for the attitude estimation error resulting from noisy angular rate measurement. A realistic simulation is presented to illustrate the results  

    Output feedback control of satellite attitude using a single vector measurement

    , Article Proceedings of the IEEE Conference on Decision and Control, 10 December 2012 through 13 December 2012, Maui, HI ; 2012 , Pages 490-495 ; 01912216 (ISSN) Safaei, F ; Namvar, M ; Sharif University of Technology
    2012
    Abstract
    The existing methods in attitude control of satellites are based on employing the estimate of satellite attitude which is usually generated by using multiple vector measurements. In this paper we propose an output feedback control law that directly uses a single vector measurement and gyro, and without any need for estimating the satellite attitude. The output feedback gain is computed by solving a generalized Riccati time varying differential equation. We assume the moment-of-inertia matrix of satellite is unknown. The controller guarantees asymptotic convergence of the attitude to its desired value. A realistic simulation is presented where a magnetometer is used to provide the single... 

    Noise analysis in satellite attitude estimation using angular rate and a single vector measurement

    , Article Proceedings of the IEEE Conference on Decision and Control, 12 December 2011 through 15 December 2011 ; December , 2011 , Pages 7476-7481 ; 01912216 (ISSN) ; 9781612848006 (ISBN) Firoozi, D ; Namvar, M ; Sharif University of Technology
    Abstract
    This paper investigates the effect of noisy measurements of the angular rate in a nonlinear attitude estimator for satellites. The attitude estimator uses measurement of a single attitude sensor such as sun, earth horizon, star tracker or magnetometer together with a rate gyro, and guarantees exponential convergence of the attitude estimation error to zero under no noise condition. This paper presents stochastic and deterministic upper bounds for the attitude estimation error affected by the noise in gyro. A realistic simulation is presented to illustrate the results  

    Shot peening coverage effect on residual stress profile by FE random impact analysis

    , Article Surface Engineering ; Volume 32, Issue 11 , 2016 , Pages 861-870 ; 02670844 (ISSN) Ghasemi, A ; Hassani Gangaraj, S. M ; Mahmoudi, A. H ; Farrahi, G. H ; Guagliano, M ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    Shot peening is one of the most effective surface treatments for improving the fatigue strength of machine elements. In this paper, a new finite element-based model to predict the effect of coverage on the surface state is proposed and critically discussed. By this model, the effects of Rayleigh damping, mesh size, and target dimensions on residual stress profile are investigated using a random impingement simulation of shot peening. Moreover, the model enables the realistic simulation of shot peening process with an affordable computational time with respect of present approaches without reducing the number of impacts and analysis accuracy: the computational time was reduced by 25% in... 

    A meshless method to simulate interactions between large soft tissue and a surgical grasper

    , Article Scientia Iranica ; Volume 23, Issue 1 , 2016 , Pages 295-300 ; 10263098 (ISSN) Saghaei Nooshabadi, Z ; Abdi, E ; Farahmand, F ; Narimani, R ; Chizari, M ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    Realistic simulation of tool-tissue interactions can help to develop more effective surgical training systems and simulators. This study uses a finite element and meshless modeling approach to simulate the grasping procedure of a large intra-abdominal organ, i.e. a kidney, during laparoscopic surgery. Results indicate that the accuracy of the meshless method is comparable with that of the finite element method, with root mean square errors in the range of 0.8 to 2.3 mm in different directions. For the model presented in this study, the computational cost of the meshless method was much less than that of the finite element model  

    Robust detection and isolation of failures in satellite attitude sensors and gyro

    , Article Robotica ; Volume 30, Issue 7 , 2012 , Pages 1157-1166 ; 02635747 (ISSN) Ahmadi, B ; Namvar, M ; Sharif University of Technology
    2012
    Abstract
    Summary Reliability of a satellite attitude control system depends on accurate detection of failures in its sensors. This paper presents an observer for robust detection and isolation of a class of failures in satellite attitude sensors. The proposed observer uses measurement of a three-axis gyro together with only one attitude sensor, and generates a residual signal which is sensitive to faults and is simultaneously robust against disturbance and noise. A nonlinear model of satellite kinematics is considered for design of the observer. The structure of the observer is in the form of a delayed continuous-time differential equation ensuring its robustness properties. A realistic simulation is... 

    A method for simulation of vapour cloud explosions based on computational fluid dynamics (CFD)

    , Article Journal of Loss Prevention in the Process Industries ; Volume 24, Issue 5 , 2011 , Pages 638-647 ; 09504230 (ISSN) Tauseef, S. M ; Rashtchian, D ; Abbasi, T ; Abbasi, S.A ; Sharif University of Technology
    Abstract
    The effectiveness of the application of CFD to vapour cloud explosion (VCE) modelling depends on the accuracy with which geometrical details of the obstacles likely to be encountered by the vapour cloud are represented and the correctness with which turbulence is predicted. This is because the severity of a VCE strongly depends on the types of obstacles encountered by the cloud undergoing combustion; the turbulence generated by the obstacles influences flame speed and feeds the process of explosion through enhanced mixing of fuel and oxidant. In this paper a CFD-based method is proposed on the basis of the author's finding that among the various models available for assessing turbulence, the... 

    A non-linear mass-spring model for more realistic and efficient simulation of soft tissues surgery

    , Article Medicine Meets Virtual Reality 16 - Parallel, Combinatorial, Convergent: NextMed by Design, MMVR 2008, Long Beach, CA, 30 January 2008 through 1 February 2008 ; Volume 132 , 2008 , Pages 23-25 ; 09269630 (ISSN); 9781586038229 (ISBN) Basafa, E ; Farahmand, F ; Vossoughi, G ; Sharif University of Technology
    IOS Press  2008
    Abstract
    An extension to the classical mass-spring model for more realistic simulation of soft tissues for surgery simulation was proposed. The conventional equations of mass-spring model were generalized for non-linear springs, and model parameters were tuned using experimental data. Results show that the proposed model is fast and interactive, and also demonstrate the typical nonlinear and visco-elastic behaviors of soft tissues well. © 2008 The authors. All rights reserved