Loading...
Search for: pyrolytic-graphite-electrodes
0.009 seconds

    Voltammetric behavior and determination of trace amounts of omeprazole using an edge-plane pyrolytic graphite electrode

    , Article Iranian Journal of Pharmaceutical Research ; Volume 14, Issue 2 , Spring , 2015 , Pages 465-471 ; 17350328 (ISSN) Shahrokhian, S ; Ghalkhani, M ; Bayat, M ; Ghorbani Bidkorbeh, F ; Sharif University of Technology
    Iranian Journal of Pharmaceutical Research  2015
    Abstract
    The voltammetric performance of edge-plane pyrolytic graphite (EPG) electrode via adsorptive stripping voltammetry was investigated for study of the electrochemical behavior of omeprazole (OMZ) in aqueous solution. The results revealed that the oxidation of OMZ is an irreversible pH-dependent process that proceeds with the transfer of one electron and one proton in an adsorption-controlled mechanism. The determination conditions, such as the pH values of the supporting electrolyte, accumulation time and scan rate were optimized. Simplicity, high reproducibility and low detection limit (3 nM) of the electrode response as well as wide linear range (0.01 to 4.0 µM) can be stated as significant... 

    Highly sensitive voltammetric determination of lamotrigine at highly oriented pyrolytic graphite electrode

    , Article Bioelectrochemistry ; Volume 84 , 2012 , Pages 38-43 ; 15675394 (ISSN) Saberi, R. S ; Shahrokhian, S ; Sharif University of Technology
    2012
    Abstract
    The electrochemical behavior of lamotrigine (LMT) at the pyrolytic graphite electrode (PGE) is investigated in detail by the means of cyclic voltammetry. During the electrochemical reduction of LMT, an irreversible cathodic peak appeared. Cyclic voltammetric studies indicated that the reduction process has an irreversible and adsorption-like behavior. The observed reduction peak is attributed to a two-electron process referring to the reduction of azo group. The electrode showed an excellent electrochemical activity toward the electro-reduction of LMT, leading to a significant improvement in sensitivity as compared to the glassy carbon electrode. The results of electrochemical impedance... 

    , Ph.D. Dissertation Sharif University of Technology Saberi, Reyhanesadat (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the first part, preparation of different kinds of polypyrrole/carbon composites and their application for drug analysis are described. In the first work, A very sensitive electrochemical sensor constructed from a glassy carbon electrode modified with a layer-by-layer MWCNT/doped overoxidized polypyrrole (oppy/MWCNT /GCE) was used for the determination of acetaminophen (AC) in the presence of codeine and ascorbic acid (AA). In comparison to the bare glassy carbon electrode, a considerable shift in the peak potential together with an increase in the peak current was observed for AC on the surface of oppy/MWCNT/GCE, which can be related to the enlarged microscopic surface area of the... 

    Voltammetric studies of Azathioprine on the surface of graphite electrode modified with graphene nanosheets decorated with Ag nanoparticles

    , Article Materials Science and Engineering C ; Volume 58 , 2016 , Pages 1098-1104 ; 09284931 (ISSN) Asadian, E ; Iraji Zad, A ; Shahrokhian, S ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    By using graphene nanosheets decorated with Ag nanoparticles (AgNPs-G) as an effective approach for the surface modification of pyrolytic graphite electrode (PGE), a sensing platform was fabricated for the sensitive voltammetric determination of Azathioprine (Aza). The prepared AgNPs-G nanosheets were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis and Raman spectroscopy techniques. The electrochemical behavior of Aza was investigated by means of cyclic voltammetry. Comparing to the bare PGE, a remarkable enhancement was observed in the response characteristics of Aza on the surface of the modified electrode (AgNPs-G/PGE) as well as a noticeable... 

    Application of pyrolytic graphite modified with nano-diamond/graphite film for simultaneous voltammetric determination of epinephrine and uric acid in the presence of ascorbic acid

    , Article Electrochimica Acta ; Volume 55, Issue 28 , 2010 , Pages 9090-9096 ; 00134686 (ISSN) Shahrokhian, S ; Khafaji, M ; Sharif University of Technology
    2010
    Abstract
    A novel modified pyrolytic graphite electrode with nano-diamond/graphite was fabricated. The electrochemical response characteristics of the modified electrode toward the epinephrine (EN) and uric acid (UA) were studied by means of cyclic and linear sweep voltammetry. The structural morphology and thickness of the film was characterized by SEM technique. The prepared electrode showed an excellent catalytic activity in the electrochemical oxidation of EN and UA, leading to remarkable enhancements in the corresponding peak currents and lowering the peak potentials. The prepared modified electrode acts as a highly sensitive sensor for simultaneous determination of EN and UA in the presence of... 

    Voltammetric studies of sumatriptan on the surface of pyrolytic graphite electrode modified with multi-walled carbon nanotubes decorated with silver nanoparticles

    , Article Talanta ; Volume 80, Issue 1 , 2009 , Pages 31-38 ; 00399140 (ISSN) Ghalkhani, M ; Shahrokhian, S ; Ghorbani Bidkorbeh, F ; Sharif University of Technology
    2009
    Abstract
    Multi-walled carbon nanotube decorated with silver nanoparticles (AgNPs-MWCNT) is used as an effective strategy for modification of the surface of pyrolytic graphite electrode (PGE). This modification procedure improved colloidal dispersion of the decorated MWCNTs in water, affording uniform and stable thin films for altering the surface properties of the working electrode. Robust electrode for sensing applications is obtained in a simple solvent evaporation process. The electrochemical behavior of sumatriptan (Sum) at the bare PGE and AgNPs-MWCNT modified PGE is investigated. The results indicate that the AgNPs-MWCNT modified PGE significantly enhanced the oxidation peak current of Sum. A...