Loading...
Search for: prosthetics
0.005 seconds
Total 23 records

    Optimization and testing of a new prototype hybrid MR brake with Arc form surface as a prosthetic knee

    , Article IEEE/ASME Transactions on Mechatronics ; Volume 23, Issue 3 , 2018 , Pages 1204-1214 ; 10834435 (ISSN) Mousavi, S. H ; Sayyaadi, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this present research work, a new configuration of the hybrid magnetorheological (MR) brake via T-shaped drum with an arc form surface boundary - the biomechanical geometric design of the hybrid MR brake as a prosthetic knee - is discussed and experimentally tested. The main purpose of this study is to develop a prosthetic knee with one rotary disc to fulfill the desired objective. To achieve this, three steps are considered. In the first step, to model the brake, slab method modeling is used to calculate the braking torque due to the arc surface. In the second step, the biomechanical geometric design is adjusted as an optimization problem to maximize the braking torque, minimize the... 

    A new configuration in a prosthetic knee using of hybrid concept of an MR brake with a T-Shaped drum incorporating an arc form surface

    , Article Smart Structures and Systems ; Volume 17, Issue 2 , 2016 , Pages 275-296 ; 17381584 (ISSN) Sayyaadi, H ; Zareh, S. H ; Sharif University of Technology
    Techno Press 
    Abstract
    This paper focuses on developing a new configuration on magnetorheological (MR) brake damper as prosthetic knee. Prosthetic knee uses magnetic fields to vary the viscosity of the MR fluid, and thereby its flexion resistance. Exerted transmissibility torque of the knee greatly depends on the magnetic field intensity in the MR fluid. In this study a rotary damper using MR fluid is addressed in which a single rotary disc will act as a brake while MR fluid is activated by magnetic field in different walking gait. The main objective of this study is to investigate a prosthetic knee with one activating rotary disc to accomplish necessary braking torque in walking gait via T-shaped drum with arc... 

    Prosthetic knee using of hybrid concept of magnetorheological brake with a T-shaped drum

    , Article 2015 IEEE International Conference on Mechatronics and Automation, ICMA 2015, 2 August 2015 through 5 August 2015 ; Aug , 2015 , Pages 721-726 ; 9781479970964 (ISBN) Sayyaadi, H ; Zareh, S. H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    This paper focuses on developing a new configuration on magnetorheological (MR) brake damper as prosthetic knee. Knee uses magnetic fields to vary the viscosity of the MR fluid, and thereby its flexion resistance. Exerted transmissibility torque of the knee greatly depends on the magnetic field intensity in the MR fluid. In this study a rotary damper using MR fluid is addressed in which a single rotary disc will act as a brake while MR fluid is activated by magnetic field in different walking gait. The main objective of this study is to investigate a prosthetic knee with one activating rotary disc to accomplish necessary braking torque in walking gait via implementing of Newton's equation of... 

    Dynamic performance of different knee mechanisms with compliant joints

    , Article Scientia Iranica ; Volume 23, Issue 3 , 2016 , Pages 1055-1063 ; 10263098 (ISSN) Ghaemi, N ; Zohoor, H ; Ghaemi, H ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    Loss of lower extremities has been one of the main problems in human life. Although most of the available knee devices are aesthetically acceptable, there is a necessity for lighter and more compact mechanisms, especially for younger amputees. This problem can be solved by the combining compliant mechanism design with traditional mechanism design methods. In this study, one group of the prosthetics that is known as the compliant knee mechanisms" is evaluated. At first, the different knee mechanisms, such as fourand six-bar knee linkages are investigated to calculate the values of the control moments (actuator torque). Then, the suitable location (where the actuator torque is to be exerted)... 

    Robust ground reaction force estimation and control of lower-limb prostheses: theory and simulation

    , Article IEEE Transactions on Systems, Man, and Cybernetics: Systems ; Volume 50, Issue 8 , 2020 , Pages 3024-3035 Azimi, V ; Nguyen, T. T ; Sharifi, M ; Fakoorian, S. A ; Simon, D ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Ground reaction force (GRF) characteristics of amputee walking are important for the analysis of clinical gait data, and also to update model reference adaptive impedance (MRAI) controllers. GRF estimation is a better alternative than direct GRF measurement because of the disadvantages of load cells, such as high cost, integration difficulties due to weight and physical dimensions, the possibility of overload, and measurement noise. This paper presents four robust MRAI observer/controller combinations for GRF estimation-based control of a prosthesis and a legged robot model in the presence of parametric uncertainties and unmodeled dynamics, in which the robot model is employed to mimic... 

    Stress analysis of three-unit all-ceramic dental bridges using FEM

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Biria, M. J ; Farahmand, F ; Shamsaei, N ; Eslami, G. R ; Sharif University of Technology
    2006
    Abstract
    Mechanical fracture is a common cause of failure for 3-unit dental bridges, particularly, the all-ceramic structures. The purpose of the present study was to evaluate the effect of convergence angles of the abutments on the distribution of the mechanical stresses, within the prosthesis and at the restoration-abutments interface of a 3-unit all-ceramic bridge. The 3-D geometrical data of the second premolar and first and second molar teeth were obtained using ATOS scanner system and utilized for reconstruction of a surface model of the 3-unit bridge in I-Deas as solid modeler software. This was then transferred to MSC/Nastran software for mesh generation and finite element analysis. Two FE... 

    An improved methodology for design of custom-made hip prostheses to be fabricated using additive manufacturing technologies

    , Article Rapid Prototyping Journal ; Volume 18, Issue 5 , 2012 , Pages 389-400 ; 13552546 (ISSN) Rahmati, S ; Abbaszadeh, F ; Farahmand, F ; Sharif University of Technology
    Emerald  2012
    Abstract
    Purpose - The purpose of this paper is to present an improved methodology for design of custom-made hip prostheses, through integration of advanced image processing, computer aided design (CAD) and additive manufacturing (AM) technologies. Design/methodology/approach - The proposed methodology for design of custom-made hip prostheses is based on an independent design criterion for each of the intra-medullary and extra-medullary portions of the prosthesis. The intra-medullar part of the prosthesis is designed using a more accurate and detailed description of the 3D geometry of the femoral intra-medullary cavity, including the septum calcar ridge, so that an improved fill and fit performance... 

    Effect of localized corrosion on the galvanic corrosion of nitinol and dental alloys

    , Article Anti-Corrosion Methods and Materials ; Volume 56, Issue 6 , 2009 , Pages 323-329 ; 00035599 (ISSN) Afshar, A ; Shirazi, M ; Rahman, M ; Fakheri, E ; Aref, M. R
    2009
    Abstract
    Purpose: The purpose of this paper is to evaluate the galvanic corrosion of nitinol orthodontic wires with six dental alloys in artificial saliva and consider the effect of initiated localized corrosion and real surfaces of anode and cathode on galvanic current. Design/methodology/approach: Linear polarization and cyclic polarization curves for each alloy in de-aerated Duffo and Castillo's artificial saliva are obtained. Galvanic corrosion investigation is conducted by polarization curve intersection and mixed potential theory methods. In order to verify the initiation of localized corrosion, scanning electron microscopy is used. Findings: Initiation of localized corrosion on the anode... 

    Estimation of muscle force with EMG signals using Hammerstein-Wiener model

    , Article IFMBE Proceedings, 20 June 2011 through 23 June 2011 ; Volume 35 IFMBE , June , 2011 , Pages 157-160 ; 16800737 (ISSN) ; 9783642217289 (ISBN) Abbasi Asl, R ; Khorsandi, R ; Farzampour, S ; Zahedi, E ; Sharif University of Technology
    2011
    Abstract
    Estimation of muscle force is needed for monitoring or control purposes in many studies and applications that include direct human involvement such as control of prosthetic arms and human-robot interaction. A new model is introduced to estimate the force of muscle from the EMG signals. Estimation is based on Hammerstein-Wiener Model which consists of three blocks. These blocks are used to describe the nonlinearity of input and output and linear behavior of the model. The nonlinear network is designed base on the sigmoid network. The introduced model is trained by some data sets which are recorded from different people and tested by some other data sets. The simulation results show low error... 

    Novel methodology in design of custom-made hip prosthesis

    , Article Innovative Developments in Design and Manufacturing - Advanced Research in Virtual and Rapid Prototyping, 6 October 2009 through 10 October 2009, Leiria ; 2010 , Pages 117-126 ; 9780415873079 (ISBN) Abbaszadeh, F ; Rahmati, S ; Farahmand, F ; Fatollahzadeh, R ; Sharif University of Technology
    2010
    Abstract
    Medical applications of rapid prototyping have an increasing trend, making the future of RP more and more promising. These applications may include design, development, and manufacture of medical devices and instrumentation, as well as implant design, anatomical modeling, surgical planning, surgical implants, and prosthesis fabrication. This paper provides a new methodology for customized hip prosthesis that could provide high accuracy of femoral canal reconstruction via 3D modeling of prosthesis stem, 3D modeling of prosthesis neck, and facilitating the communication between the designer and surgeon. Combining RP technologies and rapid tooling with this novel custom-made hip prosthesis,... 

    Dynamic simulation of the biped normal and amputee human gait

    , Article Mobile Robotics: Solutions and Challenges - Proceedings of the 12th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2009, 9 September 2009 through 11 September 2009, Istanbul ; 2010 , Pages 1113-1120 ; 9814291269 (ISBN) ; 9789814291262 (ISBN) Shandiz, M. A ; Farahmand, F ; Zohour, H ; Sharif University of Technology
    2010
    Abstract
    A two-dimensional seven link biped dynamic model was developed to investigate the mechanical characteristics of the normal and amputee locomotion during the complete gait cycle. The foot-ground contact was simulated using a five-point penetration contact model. The equations of motion were derived using Lagrange method. Optimization of the normal human walking model provided constant coefficients for the driving torque equations that could reasonably reproduce the normal kinematical pattern. The resulting torques were then applied to the intact joints of the amputee model with a prosthetic leg equipped with a kinematical driver controller for the ankle and either a hydraulic, elastic or... 

    Robust ground reaction force estimation and control of lower-limb prostheses: theory and simulation

    , Article IEEE Transactions on Systems, Man, and Cybernetics: Systems ; 2018 ; 21682216 (ISSN) Azimi, V ; Nguyen, T. T ; Sharifi, M ; Fakoorian, A ; Simon, D ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Ground reaction force (GRF) characteristics of amputee walking are important for the analysis of clinical gait data, and also to update model reference adaptive impedance (MRAI) controllers. GRF estimation is a better alternative than direct GRF measurement because of the disadvantages of load cells, such as high cost, integration difficulties due to weight and physical dimensions, the possibility of overload, and measurement noise. This paper presents four robust MRAI observer/controller combinations for GRF estimation-based control of a prosthesis and a legged robot model in the presence of parametric uncertainties and unmodeled dynamics, in which the robot model is employed to mimic... 

    A novel approach to recognize hand movements via sEMG patterns

    , Article 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society, EMBC'07, Lyon, 23 August 2007 through 26 August 2007 ; 2007 , Pages 4907-4910 ; 05891019 (ISSN) ; 1424407885 (ISBN); 9781424407880 (ISBN) Khezri, M ; Jahed, M ; Sharif University of Technology
    2007
    Abstract
    Electromyogram signal (EMG) is an electrical manifestation of contractions of muscles. Surface EMG (sEMG) signal collected form surface of the skin has been used in diverse applications. One of its usages is exploiting it in a pattern recognition system which evaluates and synthesizes hand prosthesis movements. The ability of current prosthesis has been limited in simple opening and closing that decreases the efficacy of these devices in contrary to natural hand. In order to extend the ability and accuracy of prosthesis arm movements and performance, a novel approach for sEMG pattern recognizing system is proposed. In order to have a relevant comparison, present and recent research for... 

    Neuro-fuzzy surface EMG pattern recognition for multifunctional hand prosthesis control

    , Article 2007 IEEE International Symposium on Industrial Electronics, ISIE 2007, Caixanova - Vigo, 4 June 2007 through 7 June 2007 ; 2007 , Pages 269-274 ; 1424407559 (ISBN); 9781424407552 (ISBN) Khezri, M ; Jahed, M ; Sadati, N ; Sharif University of Technology
    2007
    Abstract
    Electromyogram (EMG) signal is an electrical manifestation of muscle contractions. EMG signal collected from surface of the skin, a non-invasive bioelectric signal, can be used in different rehabilitation applications and artificial extremities control. This study has proposed to utilize the surface EMG (SEMG) signal to recognize patterns of hand prosthesis movements. It suggests using an adaptive neuro-fuzzy inference system (ANFIS) to identify motion commands for the control of a prosthetic hand. In this work a hybrid method for training fuzzy system, consisting of back-propagation (BP) and least mean square (LMS) is utilized. Also in order to optimize the number of fuzzy rules, a... 

    State of the art review on design and manufacture of hybrid biomedical materials: Hip and knee prostheses

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 231, Issue 9 , 2017 , Pages 785-813 ; 09544119 (ISSN) Bahraminasab, M ; Farahmand, F ; Sharif University of Technology
    Abstract
    The trend in biomaterials development has now headed for tailoring the properties and making hybrid materials to achieve the optimal performance metrics in a product. Modern manufacturing processes along with advanced computational techniques enable systematical fabrication of new biomaterials by design strategy. Functionally graded materials as a recent group of hybrid materials have found numerous applications in biomedical area, particularly for making orthopedic prostheses. This article, therefore, seeks to address the following research questions: (RQ1) What is the desired structure of orthopedic hybrid materials? (RQ2) What is the contribution of the literature in the development of... 

    A fuzzy sequential locomotion mode recognition system for lower limb prosthesis control

    , Article 2017 25th Iranian Conference on Electrical Engineering, ICEE 2017, 2 May 2017 through 4 May 2017 ; 2017 , Pages 2153-2158 ; 9781509059638 (ISBN) Shahmoradi, S ; Bagheri Shouraki, S ; Sharif University of Technology
    Abstract
    Control of powered lower limb prostheses has a locomotion mode-dependent structure which demands a pattern recognizer that can classify the current locomotion mode and also detect transitions between them in an appropriate time. In order to achieve this goal, this paper presents a Fuzzy sequential locomotion mode recognition system to classify daily locomotion modes including level- walking, stair climbing, slope walking, standing and sitting using low-cost mechanical sensors. Since these signals have a quasi-periodic nature, using sequential pattern recognition tools, such as Hidden Markov Model(HMM) improves the recognition performance considering they use sequences of information to make... 

    Intelligent control of an MR prosthesis knee using of a hybrid self-organizing fuzzy controller and multidimensional wavelet NN

    , Article Journal of Mechanical Science and Technology ; Volume 31, Issue 7 , 2017 , Pages 3509-3518 ; 1738494X (ISSN) Sayyaadi, H ; Zareh, S. H ; Sharif University of Technology
    Korean Society of Mechanical Engineers  2017
    Abstract
    A Magneto rheological (MR) rotary brake as a prosthesis knee is addressed here. To the gait of the amputee, the brake, automatically adapts knee damping coefficient using only local sensing of the knee torque and position. It is difficult to design a model-based controller, since the MR knee system has nonlinear and very complicated governing mathematical equations. Hence, a Hybrid self-organizing fuzzy controller and multidimensional wavelet neural network (HSFCMWNN) is proposed here to control the knee damping coefficient using of the inverse dynamics of the MR rotary damper. A Self-organizing fuzzy controller (SOFC) is also proposed and during the control process, the SOFC continually... 

    Design and analysis of a novel parallel mechanism for prosthetic knee wear test simulators

    , Article Journal of Mechanical Science and Technology ; Volume 31, Issue 2 , 2017 , Pages 885-892 ; 1738494X (ISSN) Daeinejad, F. S ; Farahmand, F ; Durali, M ; Abedinnasab, M. H ; Sharif University of Technology
    Korean Society of Mechanical Engineers  2017
    Abstract
    Using a parallel mechanism in the wear test simulators of prosthetic knees provides an easy access to the femoral and tibial components during tests. Moreover, because of its higher accuracy and load capacity, in comparison with serial mechanisms, it allows simulation of heavier tasks, such as climbing stairs, to be performed. This paper describes a new 3 Degree of freedom (DoF) spatial 2T1R (T: Translational DoF; R: Rotational DoF) parallel mechanism, for reproducing the force and motion of the tibial component of the knee prostheses in a wear test simulator. Kinematics and dynamics analysis of the mechanism indicated that it can satisfy the required DoFs, workspace and load capacity... 

    A novel robust model reference adaptive impedance control scheme for an active transtibial prosthesis

    , Article Robotica ; Volume 37, Issue 9 , 2019 , Pages 1562-1581 ; 02635747 (ISSN) Heidarzadeh, S ; Sharifi, M ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Cambridge University Press  2019
    Abstract
    In this paper, a novel robust model reference adaptive impedance control (RMRAIC) scheme is presented for an active transtibial ankle prosthesis. The controller makes the closed loop dynamics of the prosthesis similar to a reference impedance model and provides asymptotic tracking of the response trajectory of this impedance model. The interactions between human and prosthesis are taken into account by designing a second-order reference impedance model. The proposed controller is robust against parametric uncertainties in the nonlinear dynamic model of the prosthesis. Also, the controller has robustness against bounded uncertainties due to unavailable ground reaction forces and unmeasurable... 

    Dynamic stability of spine using stability-based optimization and muscle spindle reflex

    , Article IEEE Transactions on Neural Systems and Rehabilitation Engineering ; Volume 16, Issue 1 , 2008 , Pages 106-118 ; 15344320 (ISSN) Zeinali Davarani, S ; Hemami, H ; Barin, K ; Shirazi Adl, A ; Parnianpour, M ; Sharif University of Technology
    2008
    Abstract
    A computational method for simulation of 3-D movement of the trunk under the control of 48 anatomically oriented muscle actions was developed. Neural excitation of muscles was set based on inverse dynamics approach along with the stability-based optimization. The effect of muscle spindle reflex response on the trunk movement stability was evaluated upon the application of a perturbation moment. The method was used to simulate the trunk movement from the upright standing to 60° of flexion. Incorporation of the stability condition as an additional constraint in the optimization resulted in an increase in antagonistic activities demonstrating that the antagonistic co-activation acts to increase...