Loading...
Search for: prostate-specific-membrane-antigen
0.011 seconds

    Mathematical Modeling of 188Re-PSMA in Rats and its Human Absorbed dose Estimation

    , M.Sc. Thesis Sharif University of Technology Hadisi, Maliheh (Author) ; Vosoughi, Naser (Supervisor) ; Yousefnia, Hassan (Supervisor) ; Bahrami Samani, Ali (Co-Supervisor)
    Abstract
    Prostate cancer is the second most common cancer in men and the fourth leading cause of death in the world. In this study, the 188Re-HYNIC-PSMA radiolabeled compound was produced as a compound for use in the treatment of prostate cancer and its metastases under optimal labeling conditions and its radiochemical purity was obtained above 98% using RTLC and HPLC chromatographic methods. This compound is stable at room temperature and in human blood serum for at least 48 hours after preparation. The biological distribution of this compound was investigated in each rat tissue and the amount of injected activity per unit mass of each tissue (%ID/g) was determined. The bio-distribution of 188... 

    Design and fabrication of an electrochemical-based nanofibrous immunosensor for detection of prostate cancer biomarker, PSMA

    , Article Polymers for Advanced Technologies ; Volume 33, Issue 6 , 2022 , Pages 1967-1977 ; 10427147 (ISSN) Rezaei, Z ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2022
    Abstract
    Convenient medical diagnostics and treatments can replace conventional healthcare procedures because of their fast and profitable applications with reduced infection risk. Meanwhile, early diagnosis of cancer is a leading research subject due to the high fatality rate of the disease and being a vital precursor in the treatment effectiveness. Electrochemical-based micro-biosensors are the best candidates for measuring particular biomarker concentrations in body fluids. To address this need, we used a simple fabrication approach to develop an effective immunosensor for the early detection of cancer, in particular prostate cancer. The carbon fibers, obtained from the electrospinning technique,... 

    Effective surface modification of MnFe2O4@SiO2@PMIDA magnetic nanoparticles for rapid and high-density antibody immobilization

    , Article Applied Surface Science ; Volume 426 , 2017 , Pages 1023-1029 ; 01694332 (ISSN) Rashid, Z ; Soleimani, M ; Ghahremanzadeh, R ; Vossoughi, M ; Esmaeili, E ; Sharif University of Technology
    Abstract
    The present study is aimed at the synthesis of MnFe2O4@SiO2@PMIDA in terms of highly efficient sensing platform for anti-prostate specific membrane antigen (PSMA) immobilization. Superparamagnetic manganese ferrite nanoparticles were synthesized following co-precipitation method and then SiO2 shell was coated on the magnetic core with tetraethyl orthosilicate (TEOS) through a silanization reaction to prevent oxidation, agglomeration and, increase the density of OH groups on the surface of MnFe2O4. Subsequently, MnFe2O4@SiO2@PMIDA obtained as a result of the reaction between N-(phosphonomethyl)iminodiacetic acid (PMIDA) and MnFe2O4@SiO2. The reactive carboxyl groups on the surface of magnetic... 

    Recent advancements in aptamer-bioconjugates: Sharpening stones for breast and prostate cancers targeting

    , Article Journal of Drug Delivery Science and Technology ; Volume 53 , 2019 ; 17732247 (ISSN) Maghsoudi, S ; Shahraki, B. T ; Rabiee, N ; Afshari, R ; Fatahi, Y ; Dinarvand, R ; Ahmadi, S ; Bagherzadeh, M ; Rabiee, M ; Tahriri, M ; Tayebi, L ; Sharif University of Technology
    Editions de Sante  2019
    Abstract
    Breast and prostate cancers are common types of cancers with various strategies, such as chemotherapy and radiotherapy, for their therapy. Since these methods have undesired side effects and poor target affinity, neoteric strategies—known as aptamer-based smart drug delivery systems (SDDSs)—have been developed in recent years to overcome the obstacles of current treatment, and investigated for a clinical trial. The high affinity and versatility of aptamers for binding to the corresponding targets make them highly noticeable agents in the drug delivery domains. In addition to their exceptional benefits, aptamers are able to overcome tumor resistance because of their high selectivity and low... 

    Preclinical evaluation of 188 Re-HYNIC-PSMA as a novel therapeutic agent

    , Article Journal of Radioanalytical and Nuclear Chemistry ; Volume 331, Issue 2 , 2022 , Pages 841-849 ; 02365731 (ISSN) Hadisi, M ; Vosoughi, N ; Yousefnia, H ; Bahrami-Samani, A ; Zolghadri, S ; Vosoughi, S ; Alirezapour, B ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    In this study, optimized preparation, quality control, cell assessments and biostribution of 188Re-HYNIC-PSMA in normal rats and tumor bearing mice are studied. Optimized conditions for radiolabeling were evaluated and radiochemical purity (> 99%) was investigated using ITLC and HPLC methods. 188Re-HYNIC-PSMA was stable both in PBS (4 °C) and in human serum (37 °C) even after 48 h. The results showed the complex was cleared from the blood very fast via urinary track. This new radiolabeled compound has a high potential to be considered as an agent for the treatment of patients with PSMA expressing tumors however more biological studies are still needed. © 2022, Akadémiai Kiadó, Budapest,... 

    CRISPR-Cas, a robust gene-editing technology in the era of modern cancer immunotherapy

    , Article Cancer Cell International ; Volume 20, Issue 1 , September , 2020 Miri, S. M ; Tafsiri, E ; Cho, W. C. S ; Ghaemi, A ; Sharif University of Technology
    BioMed Central Ltd  2020
    Abstract
    Cancer immunotherapy has been emerged as a promising strategy for treatment of a broad spectrum of malignancies ranging from hematological to solid tumors. One of the principal approaches of cancer immunotherapy is transfer of natural or engineered tumor-specific T-cells into patients, a so called "adoptive cell transfer", or ACT, process. Construction of allogeneic T-cells is dependent on the employment of a gene-editing tool to modify donor-extracted T-cells and prepare them to specifically act against tumor cells with enhanced function and durability and least side-effects. In this context, CRISPR technology can be used to produce universal T-cells, equipped with recombinant T cell...