Loading...
Search for: properties-of-concretes
0.006 seconds

    Experimental study of the effect of water to cement ratio on mechanical and durability properties of Nano-silica concretes with Polypropylene fibers

    , Article Scientia Iranica ; Volume 26, Issue 5 A , 2019 , Pages 1-18 ; 10263098 (ISSN) Rahmani, K ; Ghaemian, M ; Hosseini, S. A ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In the present paper, the effect of Nano silica on mechanical properties and durability of concrete containing polypropylene fibers has been investigated. Here, the length and length to diameter ratio of used polypropylene fibers were considered to be fixed and equal to 18 mm and 600 respectively and the cement content was 479 kg/m3. The effect of fibers and Nano silica in four different percentages for each one at 0.1, 0.2, 0.3 and 0.4 percent by volume for fibers and 3 percent for Nano silica in concrete with water to cement ratio of 0.33, 0.36, 0.4, 0.44 and 0.5 have been compared and evaluated. In total, more than 425 cubic and cylindrical specimens were made according to ASTM standards.... 

    Investigating the effects of using different types of SiO2 nanoparticles on the mechanical properties of binary blended concrete

    , Article Composites Part B: Engineering ; Volume 54, Issue 1 , 2013 , Pages 52-58 ; 13598368 (ISSN) Najigivi, A ; Khaloo, A ; Iraji Zad, A ; Abdul Rashid, S ; Sharif University of Technology
    2013
    Abstract
    The aim of this study was to assess the effects of two different types of SiO2 nanoparticles (N and M series) with different ratios on the workability and compressive strength of developed binary blended concretes cured in water and lime solution as two different curing media. N and M series SiO2 nanoparticles with an average size of 15 nm were used as obtained from the suppliers. Fresh and hardened concretes incorporating 0.5%, 1.0%, 1.5% and 2.0% of N and 2% of M series nanoparticles with constant water to binder ratio and aggregate content were made and tested. Fresh mixtures were tested for workability and hardened concretes were tested for compressive strength at 7, 28 and 90 days of... 

    Study on mechanical properties of ternary blended concrete containing two different sizes of nano-SiO2

    , Article Composites Part B: Engineering ; Volume 167 , 2019 , Pages 20-24 ; 13598368 (ISSN) Nazerigivi, A ; Najigivi, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The aim of this study was to investigate the influences of combination of the two different SiO2 nanoparticles (15 nm and 80 nm) on compressive, flexural and tensile strength of ternary blended concrete. SiO2 nanoparticles with two different sizes of 15 and 80 nm have been used as a partial cement replacement by 0.5, 1.0, 1.5 and 2.0 wt.% in 16 different proportions of mixture followed by curing in lime solution for 7, 28 and 90 days. The results indicate that in all curing ages in lime solution specimens with 2.0% of 15 nm plus 1.5% of 80 nm cement replacement achieved higher mechanical properties. The continuous cement paste with the lowest delicate zones might be due to the fact of quick... 

    Determination of the fracture parameters of concrete with improved wedge-splitting testing

    , Article Engineering Fracture Mechanics ; Volume 276 , 2022 ; 00137944 (ISSN) Sun, L ; Du, C ; Ghaemian, M ; Zhao, W ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Considering the quasi-brittle mechanical properties of concrete, wedge-splitting tests are employed and improved in this paper to study the fracture behaviour of concrete. A novel wedge-splitting device is designed by fixing ten springs on the force transmission component. The adaptive spring force can be imposed on top of a concrete specimen to retard the brittle fracture process. With the proposed wedge-splitting test design for notched cuboid specimens, the complete load–strain/CMOD curves of concrete can be generated directly. The fracture toughness and the fracture energy can be calculated easily without numerical fitting using the double-K fracture model. The descending branch of the... 

    The effect of transverse steel and FRP jacket confinement on mechanical properties of concrete cylinders: An experimental study

    , Article ISEC 2011 - 6th International Structural Engineering and Construction Conference: Modern Methods and Advances in Structural Engineering and Construction ; 2011 , Pages 827-832 ; 9789810879204 (ISBN) Khaloo, A. R ; Javid, Y ; Khosravi, H ; Yazdani S ; Cheung S. O ; Singh A ; Ghafoori N ; American Society of Civil Engineers (ASCE); Architectural Institute of Japan (AIJ); Chartered Institute of Building (CIOB); et al.; University of Nevada Las Vegas (UNLV), College of Engineering; Wayne State College of Engineering ; Sharif University of Technology
    Abstract
    This paper presents the results of an experimental study on the behavior of concrete cylinders externally wrapped with fiber-reinforced polymer (FRP) composites and internally reinforced with steel spirals. The experimental work was performed by testing 30 concrete cylinders (120 × 400mm2) subjected to pure compression to achieve the complete stress-strain curve. Test specimens were confined with various internal and external confinement ratios and different types of confining material such as steel, Carbon FRP (CFRP) and Glass FRP (GFRP). The compressive strength, corresponding strain and the complete stress-strain curve of the tested specimenswere indicated. The test results showthat the... 

    Investigate the influence of expanded clay aggregate and silica fume on the properties of lightweight concrete

    , Article Construction and Building Materials ; Volume 220 , 2019 , Pages 253-266 ; 09500618 (ISSN) Ahmad, M. R ; Chen, B ; Farasat Ali Shah, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This study concentrated on the formulation of self-flowing and an energy efficient lightweight aggregate foamed concrete (LAFC) to be employed as thermal insulation, thermal mass and structural material. Low density concrete mixtures (for the density values from 800 to 1300 kg/m3) were prepared by changing the volume of lightweight expanded clay aggregate (ECA) from 49.4% to 20.1%. Flowing properties of concrete mixtures were improved with the help of stable foam. Ordinary Portland cement (OPC) was replaced by the 5% and 10% silica fume (SF) to examine the influence of SF on the properties of LAFC. Compressive strength and tensile strength of LAFC mixtures were respectively enhanced from 6.5... 

    Properties of concrete containing Guar gum

    , Article European Journal of Environmental and Civil Engineering ; 2020 Radvand, T ; Toufigh, V ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    This study explores the effect of Guar gum as an eco-friendly additive on concrete mechanical characteristics. In the first stage, the slump and relative humidity tests were carried out for the fresh mortar, and tensile and compressive strengths were then determined for fifteen different mixture designs with two different curing times. Further, an exponential correlation was obtained between the ultrasonic pulse velocity and the compression test results. Additionally, scanning electron microscope (SEM) was employed to assess the bond between aggregates and Guar gum. At last, the Taguchi method and ANOVA were utilized to conduct the optimum states of the mechanical characteristics of the... 

    Investigation of mechanical properties of concrete containing liquid silicone rubber under axial loads

    , Article Shock and Vibration ; Volume 2021 , 2021 ; 10709622 (ISSN) Khaloo, A ; Darabad, Y. P ; Sharif University of Technology
    Hindawi Limited  2021
    Abstract
    As the experts who have taken for granted the merits of utilizing the concrete as the most common material in the structural industry, there is a need to take affirmative steps to enhance the concrete's weaknesses such as the low ductility and energy absorption capacity. One possible way to improve the mechanical properties of concrete is to add liquid silicone rubber to the concrete. Silicone rubber is an elastomer (rubber-like material) composed of liquid rubber polymer and its hardener which is widely used in voltage line insulators, automotive applications, and medical devices. In order to increase the ductility and energy absorption of concrete, the liquid silicone rubber replaced a... 

    Properties of concrete containing Guar gum

    , Article European Journal of Environmental and Civil Engineering ; Volume 26, Issue 7 , 2022 , Pages 2736-2752 ; 19648189 (ISSN) Radvand, T ; Toufigh, V ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    This study explores the effect of Guar gum as an eco-friendly additive on concrete mechanical characteristics. In the first stage, the slump and relative humidity tests were carried out for the fresh mortar, and tensile and compressive strengths were then determined for fifteen different mixture designs with two different curing times. Further, an exponential correlation was obtained between the ultrasonic pulse velocity and the compression test results. Additionally, scanning electron microscope (SEM) was employed to assess the bond between aggregates and Guar gum. At last, the Taguchi method and ANOVA were utilized to conduct the optimum states of the mechanical characteristics of the...