Loading...
Search for: powder-x-ray-diffraction
0.006 seconds
Total 23 records

    Nanopowder synthesis of zinc oxide via solochemical processing

    , Article Materials and Design ; Volume 28, Issue 2 , 2007 , Pages 515-519 ; 02613069 (ISSN) Vaezi, M. R ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier Ltd  2007
    Abstract
    Zinc oxide is used in functional devices, catalysts, pigments, optical materials and many other important applications. ZnO nanopowders can be produced mechanochemically or solochemically. The synthesis of ZnO nanopowder has been carried out via solochemical processing from an aqueous solution of a zinc containing complex in this research. This is the newest economic method for synthesis of ZnO nanopowder. The results obtained from XRD and TEM show that the nanoparticles are single crystals and the mean particle size is 45.3 nm. TEM micrographs of ZnO nanopowder reveal that the particles have elongated particulate shape with a narrow size distribution. Solochemical processing can thus be an... 

    Synthesis, characterization, and cesium sorption performance of potassium nickel hexacyanoferrate-loaded granular activated carbon

    , Article Particulate Science and Technology ; Vol. 32, issue. 4 , 2014 , pp. 348-354 ; ISSN: 02726351 Dashtinejad, M ; Samadfam, M ; Fasihi, J ; Grayeli Fumeshkenar, F ; Sepehrian, H ; Sharif University of Technology
    Abstract
    GAC has been modified by loading of potassium nickel hexacyanoferrate (KNiCF) as a new adsorbent for cesium adsorption. The potassium nickel hexacyanoferrate-loaded granular activated carbon (KNiCF-GAC) was characterized using powder x-ray diffraction (XRD) and nitrogen adsorption-desorption isotherm data, infrared spectroscopy, and its cesium adsorption performance in aqueous solution was investigated. The effect of the various parameters such as initial pH value of the solution, contact time, temperature, and initial concentration of the cesium ion on the adsorption efficiencies of KNiCF-GAC have been studied systematically by batch experiments. The adsorption isotherm of KNiCF-GAC was... 

    Enhancement of efficient Ag-S/TiO2 nanophotocatalyst for photocatalytic degradation under visible light

    , Article Industrial and Engineering Chemistry Research ; Vol. 53, issue. 23 , 2014 , Pages 9578-9586 ; ISSN: 08885885 Feilizadeh, M ; Vossoughi, M ; Zakeri, S. M. E ; Rahimi, M ; Sharif University of Technology
    Abstract
    A new photocatalyst (Ag-S/PEG/TiO2) was synthesized by adding polyethylene glycol (PEG) to an efficient Ag-S/TiO2 photocatalyst, to obtain a photocatalyst that is highly active under visible light. In addition to Ag-S/PEG/TiO2, Ag-S/TiO2 and pure TiO2 were prepared to compare their properties and activities. Specifically, the morphologies and microstructures of the nanophotocatalysts were characterized by means of powder X-ray diffraction (XRD), N2 adsorption-desorption measurements, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) microanalysis, transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy,... 

    Synthesis and characterization of pure metallic titanium nanoparticles by an electromagnetic levitation melting gas condensation method

    , Article RSC Advances ; Vol. 4, issue. 14 , 2014 , pp. 7104-7108 ; ISSN: 20462069 Mohammadi, A. V ; Halali, M ; Sharif University of Technology
    Abstract
    Pure titanium nanoparticles were synthesized by utilizing an Electromagnetic Levitation Melting Gas Condensation (ELM-GC) method. Pure bulk titanium samples were melted and evaporated by electromagnetic levitation technique in an inert gas atmosphere in a silica tube. Titanium nanoparticles were formed from ascending vapor by employing high purity argon and helium as carrier gases and cooling agents. Particle size and morphology of the produced nanoparticles were studied by Field-Emission Scanning Electron Microscopy (FE-SEM) and Dynamic Light Scattering (DLS) analysis. Results showed almost spherical nanoparticles with a narrow size distribution under both cooling atmospheres. The purity of... 

    Facile fabrication and characterization of amino-functionalized Fe 3O4 cluster@SiO2 core/shell nanocomposite spheres

    , Article Materials Research Bulletin ; Volume 48, Issue 6 , 2013 , Pages 2023-2028 ; 00255408 (ISSN) Kalantari, M ; Kazemeini, M ; Arpanaei, A ; Sharif University of Technology
    2013
    Abstract
    We developed a modified straightforward method for the fabrication of uniformly sized silica-coated magnetite clusters core/shell type nanocomposite particles. Proposed simple one-step processing method permits quick production of materials in high yield. The structural, surface, and magnetic characteristics of the nanocomposite particles were investigated by transmission electron microscopy (TEM), scanning electron microscope (SEM), powder X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and Fourier-transform infrared (FTIR). The sphere-shaped particles almost have the average diameter of 120 nm, with a magnetic cluster core of 80 ± 15 nm, and a silica shell of 25 ± 10 nm... 

    Zinc-stearate-layered hydroxide nanohybrid material as a precursor to produce carbon nanoparticles

    , Article Journal of Alloys and Compounds ; Volume 509, Issue 5 , February , 2011 , Pages 2441-2444 ; 09258388 (ISSN) Ghotbi, M. Y ; Bagheri, N ; Sadrnezhaad, S.K ; Sharif University of Technology
    2011
    Abstract
    Zinc-stearate-layered hydroxide nanohybrid was prepared using stearate anion as an organic guest, and zinc layered hydroxide nitrate, as a layered inorganic host by the ion-exchange method. Powder X-ray diffraction patterns and Fourier transform infrared results indicated that the stearate anion was actually intercalated into the interlayer of zinc layered hydroxide nitrate and confirmed the formation of the host-guest nanohybrid material. Also, surface properties data showed that the intercalation process has changed the porosity for the as-prepared nanohybrid material in comparison with that of the parent material, zinc hydroxide nitrate. The nanohybrid material was heat-treated at 600 °C... 

    Removal of the CO2 from flue gas utilizing hybrid composite adsorbent MIL-53(Al)/GNP metal-organic framework

    , Article Microporous and Mesoporous Materials ; Volume 218 , 2015 , Pages 144-152 ; 13871811 (ISSN) Pourebrahimi, S ; Kazemeini, M ; Ganji Babakhani, E ; Taheri, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Abstract In this study, adsorption of the CO2 and N2 gases on the MIL-53(Al) and its hybrid composite with the graphene nano-plates (GNP), MIL-53(Al)/GNP, adsorbents were investigated. These materials were synthesized using the solvothermal reaction method. The prepared samples were characterized by means of the powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FESEM), N2 adsorption-desorption isotherms (BET-BJH surface area measurement) and Fourier transfer infrared (FT-IR) spectroscopy methods as well as; thermogravimetric analysis (TGA). Adsorption equilibrium of the CO2 and N2 on the sorbents were... 

    Hydrogen separation through LSF-perovskite membrane prepared by chelating method

    , Article Journal of Natural Gas Science and Engineering ; Volume 22 , January , 2015 , Pages 483-488 ; 18755100 (ISSN) Ghanbari, B ; Ghasemi, F ; Ganji Babakhani, E ; Taheri, Z ; Sharif University of Technology
    Elsevier  2015
    Abstract
    La0.3Sr0.7FeO3-δ (LSF) perovskite was prepared according to two methods: (1) applying new phenolic derivative of serine amino acid (L) as chelating agent, and (2) in absence of L as ligand-free perovskite (LFP). The newly prepared aminophenolic ligand L was fully characterized by 1H and 13C NMR, IR as well as elemental analysis while the LSF perovskite samples were characterized using the IR spectra, powder x-ray diffraction (PXRD) patterns, and SEM micrographs. The PXRD pattern obtained for the perovskite prepared by L (PPP) indicated on the presence of pure perovskite phase. The hydrogen permeation through PPP and LFP membranes with thickness of 1.0mm were measured as a function of... 

    Softening of bond stretching phonon mode in Ba 1-x K x BiO 3 superconductor

    , Article Journal of Superconductivity and Novel Magnetism ; Volume 23, Issue 7 , 2010 , Pages 1385-1389 ; 15571939 (ISSN) Khosroabadi, H ; Kobayashi, J ; Tanaka, K ; Miyasaka, S ; Tajima, S ; Uchiyama, H ; Baron, A. Q. R ; Sharif University of Technology
    2010
    Abstract
    Single crystals of Ba 1-x K x BiO 3 compound for different values of x (0 x 0.6) from insulator to superconducting region have been grown by electrochemical method. The crystals have been characterized by powder X-ray diffraction and Laue X-ray to determine the crystal structure, phases and potassium concentration. The phonon dispersion of the crystals in (100) direction has been investigated by high-resolution inelastic X-ray scattering. The phonon dispersion for low energy region is almost similar for all crystals measured in this study, while the higher energy modes shift to higher energy by increasing the potassium concentration. Anomalous softening of highest energy phonon has been... 

    Catalytic performance of Mn3O4 and Co 3O4 nanocrystals prepared by sonochemical method in epoxidation of styrene and cyclooctene

    , Article Applied Surface Science ; Volume 256, Issue 22 , 2010 , Pages 6678-6682 ; 01694332 (ISSN) Askarinejad, A ; Bagherzadeh, M ; Morsali, A ; Sharif University of Technology
    2010
    Abstract
    A simple sonochemical method was developed to synthesis uniform sphere-like Co3O4 and Mn3O4 nanocrystals. Epoxidation of styrene and cyclooctene by anhydrous tert-butyl hydroperoxide over the prepared Co3O4 and Mn3O4 nanocatalysts was investigated. The results of conversion activity were compared with bulk Co3O4 and Mn3O4. Under optimized reaction conditions, the nanocatalysts showed a superior catalytic performance as compared to the bulk catalysts. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and BET surface area, were used to characterize and investigate the nanocatalysts  

    Transesterification of canola oil over Li/Ca-La mixed oxide catalyst: Kinetics and calcination temperature investigations

    , Article Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology ; Volume 45, Issue 4 , 2017 , Pages 442-448 ; 02532409 (ISSN) Maleki, H ; Kazemeini, M ; Sharif University of Technology
    Science Press  2017
    Abstract
    In this research, a solid 1%Li/Ca-La mixed oxide catalyst was prepared using co-precipitation method followed by wet impregnation. The prepared catalyst was used in the transesterification reaction of canola oil and methanol for biodiesel synthesis. The effects of calcination and reaction temperatures were investigated on the activity of the catalyst. In addition, rate of the reaction was studied through a kinetic model for which parameters were determined. Surface properties and structure of the catalyst were characterized through the powder X-ray diffraction (XRD), thermogravimetry/derivative thermogravimetry (TG/DTG), and Fourier transform infrared spectroscopy analysis. All these... 

    Embedding graphene nanoplates into MIL-101(Cr) Pores: synthesis, characterization, and CO2 adsorption studies

    , Article Industrial and Engineering Chemistry Research ; Volume 56, Issue 14 , 2017 , Pages 3895-3904 ; 08885885 (ISSN) Pourebrahimi, S ; Kazemeini, M ; Vafajoo, L ; Sharif University of Technology
    Abstract
    In this research, the equilibrium and dynamic adsorption studies of the CO2 upon the MIL-101(Cr) metal-organic framework (MOF) as well as its GNP hybrid composites, the MIL-101(Cr)/GNP, were performed. First, the hybrid composite samples were synthesized by adding various amounts of GNP in an in situ manner during the preparation of the MIL-101(Cr). The prepared materials were characterized through several physicochemical analyses, including powder X-ray diffraction (PXRD), adsorption of nitrogen at 77.4 K, Fourier transfer infrared (FT-IR) spectroscopy, thermal analysis (DTG), and field emission scanning electron microscopy (FESEM). It was demonstrated that the synthesized MIL-101(Cr)/GNP... 

    Through-space electronic communication of zinc phthalocyanine with substituted [60]Fullerene bearing O2Nxaza-crown macrocyclic ligands

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 171 , 2017 , Pages 330-339 ; 13861425 (ISSN) Ghanbari, B ; Shahhoseini, L ; Mahlooji, N ; Gholamnezhad, P ; Taheri Rizi, Z ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Two new macrocyclic ligands containing 17- and 19-membered O2N3-donor aza-crowns anchored to [60]Fullerene were synthesized and characterized by employing HPLC, electrospray ionization mass (ESI-MS), 1H and 13C NMR, UV–vis, IR spectroscopies, as well as powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA) in solid state. TGA measurements revealed that upon linking each of these macrocycle rings to [60]Fullerene, the decomposition point measured for [60]Fullerene moiety was increased, indicating on the promoted stability of [60]Fullerene backbone during binding to these macrocyclic ligands. Moreover, the ground state non-covalent interactions of [60]Fullerene derivatives of... 

    Hydrogen sensing properties of nanocomposite graphene oxide/Co-based metal organic frameworks (Co-MOFs@GO)

    , Article Nanotechnology ; Volume 29, Issue 1 , 2018 ; 09574484 (ISSN) Fardindoost, S ; Hatamie, S ; Zad, A. I ; Astaraei, F. R ; Sharif University of Technology
    Institute of Physics Publishing  2018
    Abstract
    This paper reports on hydrogen sensing based graphene oxide hybrid with Co-based metal organic frameworks (Co-MOFs@GO) prepared by the hydrothermal process. The texture and morphology of the hybrid were characterized by powder x-ray diffraction, scanning electron microscopy and Brunauer-Emmett-Teller analysis. Porous flower like structures assembled from Co-MOFs and GO flakes with sufficient specific surface area are obtained, which are ideal for gas molecules diffusion and interactions. Sensing performance of Co-MOFs@GO were tested and also improved by sputtering platinum (Pt) as a catalyst. The Pt-sputtered Co-MOFs@GO show outstanding hydrogen resistive-sensing with response and recovery... 

    Continuous synthesis of barium sulfate nanoparticles in a new high-speed spinning disk reactor

    , Article Industrial and Engineering Chemistry Research ; Volume 58, Issue 36 , 2019 , Pages 16597-16609 ; 08885885 (ISSN) Jahanshahi Anboohi, J ; Molaei Dehkordi, A ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    A new high-speed spinning disk reactor (HSSDR) was proposed and tested successfully. In this regard, barium sulfate (BaSO4) nanoparticles were synthesized using reactive crystallization processes. In this reactor, the rotational disk speed was varied from 5000 to 15 000 rpm. The effects of various design and operating parameters such as the rotational disk speed, feed entrance radius, volumetric flow rate of feed solutions, supersaturation, and free ion ratio were investigated in detail. The mean particle size (MPS) and specifications of the synthesized barium sulfate were investigated using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy and powder X-ray... 

    Synergistic effect of Ni-based metal organic framework with graphene for enhanced electrochemical performance of supercapacitors

    , Article Journal of Materials Science: Materials in Electronics ; Volume 30, Issue 13 , 2019 , Pages 12351-12363 ; 09574522 (ISSN) Azadfalah, M ; Sedghi, A ; Hosseini, H ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Developing advanced electrode materials with metal–organic frameworks (MOFs) has increasingly attracted attentions as an effective method for improving supercapacitors performances. However, their poor conductivity has limited their use in energy applications. In this paper, an effective strategy is presented to reduce the electric resistance of MOFs by the in situ synthesis of Ni-based MOFs with graphene (Ni-MOF/graphene). The fabricated Ni-MOF/graphene composite was characterized by powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), Raman spectra, Brunauer–Emmett–Teller (BET) and... 

    Ni(II) 1D-coordination polymer/C 60 -modified glassy carbon electrode as a highly sensitive non-enzymatic glucose electrochemical sensor

    , Article Applied Surface Science ; Volume 478 , 2019 , Pages 361-372 ; 01694332 (ISSN) Shahhoseini, L ; Mohammadi, R ; Ghanbari, B ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    A new non-enzymatic sensor for glucose is prepared by using of Ni(II)-one dimensional coordination polymer (Ni(II)-Cp) and C 60 . The Ni(II)-Cp prepared by slow diffusion and evaporation of two solution layers of NiCl 2 and diaza-macrocycle bearing two pyridine side arms (as the reported tecton) in DMF. The Ni(II)-Cp was characterized by powder x-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) as well as Fourier transform infrared spectroscopy (FT-IR). C 60 as modified was added to Ni(II)-Cp for improving the electrical and chemical stability of the composite. The newly assembled Ni(II)-Cp/C 60 also coated on glassy carbon electrode (GC) to... 

    DFT and experimental study of the host-guest interactions effect on the structure, properties, and electro-catalytic activities of N 2O 2-Ni(II) schiff-base complexes incorporated into zeolite

    , Article Journal of Physical Chemistry C ; Volume 116, Issue 34 , 2012 , Pages 18518-18532 ; 19327447 (ISSN) Jafarian, M ; Rashvand Avei, M ; Khakali, M ; Gobal, F ; Rayati, S ; Mahjani, M. G ; Sharif University of Technology
    2012
    Abstract
    Ni II-(N,N′-bis(2,4-dihydroxyacetophenone)-2, 2-dimethylpropandiimine (Ni II{salnptn(4-OH) 2}) complex has been encapsulated within the supercage of zeolite-NaY by reacting Ni 2+-exchanged NaY with the flexible Schiff-base ligand that diffuses into the cavities. The encapsulated complex is characterized by EDX, scanning electron microscopy, powder X-ray diffraction, FT-IR, and cyclic voltammetry studies. Density functional calculation is being carried out on both the free nickel Schiff-base complex and that encapsulated in NaY zeolite to investigate changes in structural parameters, energies of the HOMO and LUMO, and absolute hardness and softness. Electrochemical properties of the NaY... 

    Sonochemical fabrication and catalytic properties of α -Fe2O3 nanoparticles

    , Article Journal of Experimental Nanoscience ; Volume 6, Issue 3 , 2011 , Pages 217-225 ; 17458080 (ISSN) Askarinejad, A ; Bagherzadeh, M ; Morsali, A ; Sharif University of Technology
    Abstract
    In this study, α -Fe2O3 (hematite) nanoparticles were synthesised by a sonochemical method. The influence of different factors such as chemical composition of the precursors, atmosphere of the reactions and type of the sonicator on the chemical formula, crystallinity, morphology and size of the obtained products were investigated. Powder X-ray diffraction, scanning electron microscopy and IR spectroscopy, were used to characterise the nanostructures. The catalytic tests were performed in the reaction of methyl phenyl sulphide oxidation. The results exhibit the good catalytic performance of the as-prepared α -Fe2O3 nanoparticles  

    Electrical behavior of nano-polycrystalline (La1-yK y)0.7Ba0.3MnO3 manganites

    , Article Journal of Magnetism and Magnetic Materials ; Volume 322, Issue 21 , November , 2010 , Pages 3255-3261 ; 03048853 (ISSN) Mazaheri, M ; Akhavan, M ; Sharif University of Technology
    2010
    Abstract
    We present a study of the structural and electrical behavior of nano-polycrystalline mixed barium and alkali substituted lanthanum-based manganite, (La1-yKy)0.7Ba0.3MnO 3 with y=0.00.3. The samples were synthesized by the polymerization complex solgel method. The powder X-ray diffraction (XRD) data of the samples show a single-phase character with R3c space group. The magnetic and electrical transport properties of the nano-polycrystalline samples have been investigated in the temperature range 50300 K and a magnetic field up to 10 kOe. The metalinsulator transition temperature Tp of all the samples decreased with potassium doping, and also, it increased slightly with the application of...