Loading...
Search for: potential-range
0.007 seconds

    Electrodeposition of platinum nanowires: Electrochemical characterization

    , Article ECS Transactions, 25 April 2010 through 30 April 2010 ; Volume 28, Issue 18 , April , 2010 , Pages 25-35 ; 19385862 (ISSN) ; 9781607681946 (ISBN) Mahshid, S. S ; Dolati, A ; Hashemi Daryan, S ; Ghorbani, M ; Ghahramaninezhad, A ; Physical and Analytical Electrochemistry ; Sharif University of Technology
    2010
    Abstract
    Platinum nanowires (PtNWs) were electrodeposited on the polycarbonate templates (PCTs) in aqueous solution of H2PtCl6 in triply distilled water. Nanowires with diameters of 50 and 100 nanometers were electrodeposited on the same condition. The kinetics of electrodeposition process was studied by electrochemical techniques such as voltammetry and chronoamperometry methods. Increasing the scan rate, the peaks shifted to more negative potentials and the current density also increased in each peak which was typical for a diffusion-control process. The potential range for the deposition of platinum nanowires was specified and consequently the potentiostatic i-t transients were utilized to produce... 

    The pH effects on the capacitive behavior of nanostructured molybdenum oxide

    , Article Journal of Solid State Electrochemistry ; Volume 14, Issue 4 , 2010 , Pages 681-686 ; 14328488 (ISSN) Farsi, H ; Gobal, F ; Raissi, H ; Moghiminia, S ; Sharif University of Technology
    Abstract
    Nanostructured molybdenum oxide having a particle size in the range of 30-80 nm was prepared by potentiodynamic electrodeposition method, and the effects of H2SO4 concentration on its capacitive behavior were studied by cyclic voltammetry, galvanostatic discharge, and electrochemical impedance spectroscopy. Poor to fair capacitive behaviors were witnessed depending on the electrolyte concentration and conditions of charge/discharge. Increasing acid concentration to 0.02 M had favorable effect, while beyond that, the effect was detrimental. Capacitance around 600 F g-1 was recorded in the potential range of 0 to -0.55 V vs. Ag/AgCl  

    Surface passivation of titanium dioxide via an electropolymerization method to improve the performance of dye-sensitized solar cells

    , Article RSC Advances ; Volume 6, Issue 15 , 2016 , Pages 12537-12543 ; 20462069 (ISSN) Mazloum Ardakani, M ; Khoshroo, A ; Taghavinia, N ; Hosseinzadeh, L ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    In dye-sensitized solar cells recombination reactions at the TiO2 photoanode with the electrolyte interface plays a critical role in cell efficiency. Recombination of injected electrons in the TiO2 with acceptors in the electrolyte usually occurs on uncovered areas of TiO2 surfaces. In this work, we report electropolymerization of polymer films on nanoporous TiO2 electrode surfaces using an ionic liquid as the growth medium. The choice of ionic liquid as the growth medium for this study is based on the insolubility of dye N719 in this electrolyte, thus avoiding dye molecule detachment from the TiO2 photoanode surface over the entire potential range investigated during the... 

    A study of hydrated nanostructured tungsten trioxide as an electroactive material for pseudocapacitors

    , Article Ionics ; Volume 19, Issue 2 , May , 2013 , Pages 287-294 ; 09477047 (ISSN) Farsi, H ; Gobal, F ; Barzgari, Z ; Sharif University of Technology
    2013
    Abstract
    Agglomerates of tungsten trioxide in the range of 90 nm to 1 μm are prepared by the acid precipitation method and characterized by XRD as well as scanning electron microscopy. The product when coated with platinum showed pseudocapacitance when in contact with acidic electrolyte in the potential range of 0. 1 to -0. 25 V/SCE. Capacitance in the range of 0. 014 to 0. 039 F cm-2 exhibiting moderate potential dependencies measured through both chronopotentiometry and impedance spectroscopy is presumed to be due to the insertion/de-insertion of protons into the lattice of tungsten trioxide. Equivalent circuit consisting of parallel simulators of mass transfer and capacitor charging... 

    Polysulfide poisoning of Ag electrocatalyst during L-ascorbate ion electro-oxidation in alkaline solution

    , Article Cuihua Xuebao/Chinese Journal of Catalysis ; Volume 33, Issue 2 , 2012 , Pages 267-274 ; 02539837 (ISSN) Gobal, F ; Majari Kasmaee, L ; Sharif University of Technology
    Abstract
    L-Ascorbate anion electro-oxidation on a silver electrode in hydroxide solution in the absence and presence of sodium polysulfide of concentrations from 1 × 10 -5 to 4.5 × 10 -4 mol/L was studied using cyclic voltammetry and electrochemical impedance spectroscopy. Both hydroxide and polysulfide ions inhibited L-ascorbate ion oxidation, with the poisoning effect of polysulfide ion being more pronounced in the potential range of -0.3 to -0.2 V/SCE. The time constants for L-ascorbate ion oxidation in the absence and presence of polysulfide were, 10 -3 to 1 × 10 -2 s and 1 × 10 -4 to 1 × 10 -2 s, respectively depending on the potential used for the impedance analysis. Based on the cyclic... 

    Investigation of electrochemical parameters on cost-effective Zn/Ni-based electrocatalysts for electrochemical co2reduction reaction to syngas(H2+CO)

    , Article Journal of the Electrochemical Society ; Volume 169, Issue 4 , 2022 ; 00134651 (ISSN) Shahrestani, S ; Beheshti, M ; Kakooei, S ; Sharif University of Technology
    IOP Publishing Ltd  2022
    Abstract
    Electrochemical CO2 reduction reaction (CO2RR) has been studied in 0.1 M of KCl (pH of 6.96), NaHCO3 (pH of 8.3) and K2CO3 (pH of 11.36) cathodic solutions with various counter electrodes including graphite rod, SS316 rod and Pt mesh at different potential ranges on the Znx-Ni1-x bimetallic electrocatalysts. Among the Znx-Ni1-x electrocatalysts, the Zn-Ni electrode with a composition of 65 wt% Zn and 35 wt% Ni and cluster-like microstructure has the best performance for CO2RR by according to minimum coke formation and optimum CO and H2 faradaic efficiencies (CO FE% = 55% and H2 FE% = 45%). The cyclic voltammetry (CV) measurements and gas chromatography (GC) analysis for the CO2RR showed that... 

    Morphology and hydrogen sensing studies of the electrodeposited nanostructure palladium on porous silicon

    , Article International Journal of Nanotechnology ; Volume 6, Issue 10-11 , 2009 , Pages 892-901 ; 14757435 (ISSN) Astaraie, F. R ; Iraji zad, A ; Taghavi, N. S ; Abbaszadeh, D ; Dolati, A ; Mahshid, S. S ; Sharif University of Technology
    2009
    Abstract
    We have investigated hydrogen sensing properties of electrodeposited Pd clusters on macroporous silicon substrates. Porous layer was prepared by electrochemical etching of p-type silicon (100) wafer in organic electrolyte DMF (dimethylformamide) diluted by HF (%95 Vol. %). The deposition of Pd was carried out by linear voltammetry (LV) technique. This technique was taken for reduction of palladium ions in the potential range from 0.4 V to -1 V vs. SCE, at the scan rate of 20 mV s-1. Some samples were annealed at 300°C for an hour in air to study the effect of heat treatment on their gas sensitivity. Surface structural and chemical properties of the samples were characterised using Scanning...