Loading...
Search for: potential-applications
0.007 seconds

    A method for automatic tuning the memristance of memristive devices with the capacity of applying to memristive memories

    , Article 2012 International Conference on Computer Systems and Industrial Informatics, ICCSII 2012, 18 December 2012 through 20 December 2012 ; December , 2012 ; 9781467351577 (ISBN) Merrikh Bayat, F ; Merrikh Bayat, F ; Mirebrahimi, N ; Sharif University of Technology
    2012
    Abstract
    Memristor is the fourth fundamental passive circuit element which has potential applications in development of analog memristive memories, neuroscience, and brain simulation. In all of these applications the memristance of the device should be adjusted to the desired value, which is currently performed by trial and error. The aim of this paper is to propose a new method and develop a circuit for automatic adjustment of the memristance of memristive devices. The proposed method is based on the sliding mode control and numerical simulations show that it can be used for tuning the memristance of such devices with a high accuracy  

    Matrix analysis of nonlinear trusses using Prandtl-2 neural networks

    , Article Journal of Sound and Vibration ; Volume 330, Issue 20 , 2011 , Pages 4813-4826 ; 0022460X (ISSN) Joghataie, A ; Farrokh, M ; Sharif University of Technology
    2011
    Abstract
    A new method, based on the concepts of matrix analysis as well as the learning capabilities of neural networks, for the analysis of nonlinear trusses under dynamic loading is presented. The method can be applied to static trusses too. While there have been attempts in the past to use neural networks to identify and model different structures based on data measured on structural response directly, the main feature and advantage of this new method is in its capability to model a nonlinear truss by assembling the data collected on the response of its members. The basics of the method are: (1) for each truss member, a neural network is trained to learn and simulate its loadresponse behavior, (2)... 

    Membrane interactions control residue fluctuations of outer membrane porins

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 81, Issue 5 , May , 2010 ; 15393755 (ISSN) Besya, A. B ; Mobasheri, H ; Ejtehadi, M. R ; Sharif University of Technology
    2010
    Abstract
    Bacterial outer membrane porins (Omp) that have robust β -barrel structures, show potential applications for nanomedicine devices in synthetic membranes and single molecule detection biosensors. Here, we explore the conformational dynamics of a set of 22 outer membrane porins, classified into five major groups: general porins, specific porins, transport Omps, poreless Omps and composed pores. Normal mode analysis, based on mechanical vibration theory and elastic network model, is performed to study the fluctuations of residues of aforementioned porins around their equilibrium positions. We find that a simple modification in this model considering weak interaction between protein and... 

    Potential application of single-layered graphene sheet as strain sensor

    , Article Solid State Communications ; Volume 147, Issue 7-8 , August , 2008 , Pages 336-340 ; 00381098 (ISSN) Sakhaee Pour, A ; Ahmadian, M. T ; Vafai, A ; Sharif University of Technology
    2008
    Abstract
    Molecular structural mechanics is implemented to investigate the vibrational characteristics of defect-free single-layered graphene sheets (SLGSs), which have potential applications as strain sensors. The effect of strain on the fundamental frequencies of the defect-free zigzag and armchair models with clamped-clamped boundary condition is studied. The atomistic modeling results reveal while sensitivities of the strain sensors are not influenced significantly by chirality, they can be slightly increased by decreasing aspect ratios of the sheets. It is further shown that the SLGSs-based strain sensors are more sensitive to the applied stretch than the SWCNTs versions. © 2008 Elsevier Ltd. All... 

    Compatibility of the endurance time method with codified seismic analysis approaches on three-dimensional analysis of steel frames

    , Article Structural Design of Tall and Special Buildings ; Volume 22, Issue 2 , 2013 , Pages 144-164 ; 15417794 (ISSN) Valamanesh, V ; Estekanchi, H. E ; Sharif University of Technology
    2013
    Abstract
    The endurance time (ET) method is a time history-based dynamic pushover analysis procedure that utilizes special intensifying acceleration functions for estimating the seismic performance of structures at different excitation levels. One of the potential applications of the ET method is in the three-dimensional analysis of buildings considering multidirectional excitation. In this paper, a procedure for multi-component analysis by the ET method has been developed. Several steel moment frames with heights from 9.6 to 48 m were designed according to the Iranian National Building Code. By applying the proposed algorithm for three-dimensional analysis of structures by the ET method, these frames... 

    Application of elastically supported single-walled carbon nanotubes for sensing arbitrarily attached nano-objects

    , Article Current Applied Physics ; Volume 13, Issue 1 , 2013 , Pages 107-120 ; 15671739 (ISSN) Kiani, K ; Ghaffari, H ; Mehri, B ; Sharif University of Technology
    Abstract
    The potential application of SWCNTs as mass nanosensors is examined for a wide range of boundary conditions. The SWCNT is modeled via nonlocal Rayleigh, Timoshenko, and higher-order beam theories. The added nano-objects are considered as rigid solids, which are attached to the SWCNT. The mass weight and rotary inertial effects of such nanoparticles are appropriately incorporated into the nonlocal equations of motion of each model. The discrete governing equation pertinent to each model is obtained using an effective meshless technique. The key factor in design of a mass nanosensor is to determine the amount of frequency shift due to the added nanoparticles. Through an inclusive parametric... 

    Application of the endurance time method in seismic analysis of concrete gravity dams

    , Article Scientia Iranica ; Volume 18, Issue 3 A , June , 2011 , Pages 326-337 ; 10263098 (ISSN) Valamanesh, V ; Estekanchi, H. E ; Vafai, A ; Ghaemian, M ; Sharif University of Technology
    2011
    Abstract
    In this paper, application of the Endurance Time (ET) method in seismic analysis of concrete gravity dams has been investigated. The ET method is based on time history analysis of structures, subjected to specially designed intensifying acceleration functions. It is expected that by developing its application in analysis of concrete dams, useful information on the seismic behavior of such dams at various excitation intensities can be obtained. Results from linear analysis of Folsom and Koyna dams under real earthquakes and ET acceleration functions have been compared. It is shown that the ET method can predict the response of concrete gravity dams to individual earthquakes with reasonable... 

    Endurance time method for multi-component analysis of steel elastic moment frames

    , Article Scientia Iranica ; Volume 18, Issue 2 A , 2011 , Pages 139-149 ; 10263098 (ISSN) Valamanesh, V ; Estekanchi, H. E ; Sharif University of Technology
    Abstract
    The Endurance Time (ET) method is a time history-based dynamic analysis procedure which uses special intensifying acceleration functions for evaluation of the seismic response of structures. One of the potential applications of the ET method is in the three-dimensional analysis of buildings under multidirectional excitations. In this paper, considering horizontal components of excitation, an algorithm for the multi-component analysis of building structures by the ET method is proposed, and results of the ET method for various steel moment frames with 1 to 7 stories are compared with results from time history analysis with real earthquakes. Results show that based on recommendations of... 

    Polyrotaxane capped quantum dots as new candidates for cancer diagnosis and therapy

    , Article Journal of Nanostructured Polymers and Nanocomposites ; Volume 7, Issue 1 , 2011 , Pages 18-31 ; 17904439 (ISSN) Sarabi, R. S ; Sadeghi, E ; Hosseinkhani, H ; Mahmoudi, M ; Kalantari, M ; Adeli, M ; Sharif University of Technology
    2011
    Abstract
    Molecular self-assembly of cadmium selenide quantum dots-end-capped polyrotaxane hybrid nanostructures (PRCdSe QDs) was led to a new type of core-shell hybrid nanomaterials consisting of cadmium selenide quantum dot (CdSe QDs) core and polyrotaxane shell (PR@QDs). Structure of PR@QDs was characterized using various techniques. It has been observed that the size of PR@QDs was between 20-25 nm in which diameter of core and thickness of shell were between 15-20 and 2-3 nm, respectively. Short-term in vitro cytotoxicity tests, using MTT (3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, were conducted on mouse tissue connective fibroblast adhesive cell line (L929) in order to... 

    Coating of graphite flakes with MgO/carbon nanocomposite via gas state reaction

    , Article Journal of Alloys and Compounds ; Volume 500, Issue 1 , June , 2010 , Pages 74-77 ; 09258388 (ISSN) Sharif, M ; Faghihi Sani, M. A ; Golestani Fard, F ; Saberi, A ; Soltani, A. K ; Sharif University of Technology
    2010
    Abstract
    Coating of graphite flakes with MgO/carbon nanocomposite was carried out via gaseous state reaction between mixture of Mg metal, CO gas and graphite flakes at 1000 °C. XRD and FE-SEM analysis of coating showed that the coating was comprised of MgO nano particles and amorphous carbon distributed smoothly and covered the graphite surface evenly. Thermodynamic calculations were employed to predict the reaction sequences as well as phase stability. The effect of coating on water wettability and oxidation resistance of graphite was studied using contact angle measurement and TG analysis, respectively. It was demonstrated that the reaction between Mg and CO could result in MgO/C nanocomposite... 

    Carbon nanotubes-graft-polyglycerol: biocompatible hybrid materials for nanomedicine

    , Article Polymer ; Volume 50, Issue 15 , 2009 , Pages 3528-3536 ; 00323861 (ISSN) Adeli, M ; Mirab, N ; Shafiee Alavidjeh, M ; Sobhani, Z ; Atyabi, F ; Sharif University of Technology
    2009
    Abstract
    New biocompatible and water soluble hybrid materials containing multi-wall carbon nanotubes (MWCNTs) as core and hyperbranched polyglycerol (PG) as shell were synthesized successfully. In this work, pristine MWCNTs were opened and functionalized through treatment with acid and polyglycerol was covalently grafted onto their surface by the "grafting from" approach based on in-situ ring-opening polymerization of glycidol. Some short-term In vitro cytotoxicity and hemocompatibility tests were conducted on HT1080 cell line (human Fibrosarcoma), because this epithelial cell line can be one of the first route of entry of the exogenous materials to the vascular system and therefore subsequent... 

    Investigating the fracture network effects on sweep efficiency during wag injection process

    , Article Transport in Porous Media ; Volume 93, Issue 3 , July , 2012 , Pages 577-595 ; 01693913 (ISSN) Dehghan, A. A ; Ghorbanizadeh, S ; Ayatollahi, S ; Sharif University of Technology
    2012
    Abstract
    In this study, the main recovery mechanisms behind oil/water/gas interactions during the water-alternating-gas (WAG) injection process, in a network of matrix/fracture, were fundamentally investigated. A visual micromodel was utilized to provide insights into the potential applications of WAG process in fractured oil-wet media as well as the possibility of observing microscopic displacement behavior of fluids in the model. The model was made of an oil-wet facture/matrix network system, comprised of four matrix blocks surrounded with fractures. Different WAG injection scenarios, such as slug arrangements and the effects of fluid injection rates on oil recovery were studied. A new equation... 

    Design and Synthesis of Novel Polyglycerol Hybrid Nanomaterials for Potential Applications in Drug Delivery Systems

    , Article Macromolecular Bioscience ; Volume 11, Issue 3 , NOV , 2011 , Pages 383-390 ; 16165187 (ISSN) Zarrabi, A ; Adeli, M ; Vossoughi, M ; Shokrgozar, M. A ; Sharif University of Technology
    2011
    Abstract
    The synthesis of a new drug delivery system based on hybrid nanomaterials containing a β-CD core and hyperbranched PG is described. Conjugating PG branches onto β-CD not only increases its water solubility but also affects its host/guest properties deeply. It can form molecular inclusion complexes with small hydrophobic guest molecules such as ferrocene or FITC with reasonable release. In addition, the achievable payloads are significantly higher as for carriers such as hyperbranched PGs. Short-term in vitro cytotoxicity and hemocompatibility tests on L929 cell lines show that the hybrid nanomaterial is highly biocompatible. Due to their outstanding properties, β-CD-g-PG hybrid nanomaterials... 

    Synthesis, characterization and swelling behavior of chitosan-sucrose as a novel full-polysaccharide superabsorbent hydrogel

    , Article Journal of Applied Polymer Science ; Volume 109, Issue 4 , 15 August , 2008 , Pages 2648-2655 ; 00218995 (ISSN) Pourjavadi, A ; Aghajani, V ; Ghasemzadeh, H ; Sharif University of Technology
    2008
    Abstract
    A novel full-polysaccharide hydrogel was prepared by crosslinking of chitosan with periodate-oxidized sucrose. A tetraaldehyde molecule is synthesized via periodate oxidation of sucrose and then applied as a crosslinking agent to form a new hydrogel network. A mechanism for the superabsorbent hydrogel formation via reductive N-alkylation was also suggested. The structure of the hydrogel was confirmed by FTIR spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). It is shown that crosslinking of chitosan can improve its thermal stability. The effects of crosslinker concentration, pH, and inorganic salt on the swelling behavior of the hydrogel were studied. The... 

    Poly(citric acid)-block-poly(ethylene glycol) copolymers-new biocompatible hybrid materials for nanomedicine

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 6, Issue 4 , Aug , 2010 , Pages 556-562 ; 15499634 (ISSN) Tavakoli Naeini, A ; Adeli, M ; Vossoughi, M ; Sharif University of Technology
    Abstract
    Linear-dendritic ABA triblock copolymers containing poly(ethylene glycol) (PEG) as B block and hyperbranched poly(citric acid) (PCA) as A blocks were synthesized through polycondensation. The molecular self-assembly of synthesized PCA-PEG-PCA copolymers in water led to formation of nanoparticles and fibers in different sizes and shapes depending on the time and size of PCA blocks. Ten days after dissolving PCA-PEG-PCA copolymers in water, the size of fibers had reached several millimeters. Mixing a water solution of fluorescein as a small guest molecule and PCA-PEG-PCA copolymers led to the encapsulation of fluorescein by products of molecular self-assembly. To investigate their potential... 

    Multiphysics flow modeling and in vitro toxicity of iron oxide nanoparticles coated with poly(vinyl alcohol)

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 6 , 2009 , Pages 2322-2331 ; 19327447 (ISSN) Mahmoudi, M ; Shokrgozar, M. A ; Simchi, A ; Imani, M ; Milani, A. S ; Stroeve, P ; Vali, H ; Häfeli, U. O ; Bonakdar, S ; Sharif University of Technology
    2009
    Abstract
    This study investigated the behavior of ferrofluids containing superparamagnetic iron oxide nanoparticles (SPION) of various compositions for potential applications in drug delivery and imaging. To ensure biocompatibility, the interaction of these SPION with two cell lines (adhesive and suspended) was also investigated using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) assay. The cell lines studied were primary mouse connective tissue cells (adhesive) and human leukemia cells (suspended). SPION were synthesized with a co-precipitation method under different stirring rates and NaOH molarities. The SPION demonstrated a range of magnetic saturations due to their... 

    Template-directed hydrothermal synthesis of dandelion-like hydroxyapatite in the presence of cetyltrimethylammonium bromide and polyethylene glycol

    , Article Ceramics International ; Volume 35, Issue 7 , 2009 , Pages 2563-2569 ; 02728842 (ISSN) Salarian, M ; Solati Hashjin, M ; Shafiei, S. S ; Salarian, R ; Nemati, Z. A ; Sharif University of Technology
    2009
    Abstract
    A template-directed synthetic method, using surfactant cetyltrimethylammonium bromide (CTAB) as a template and co-surfactant polyethylene glycol (PEG600) as a co-template under hydrothermal conditions, has been applied to obtain dandelion-like HAp. The morphology, size, crystalline phase, chemical composition, physical characteristics, and thermal behavior of the product were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier ransform infrared spectroscopy (FTIR), induced coupled plasma spectroscopy (ICP), BET (Brunauer, Emmett, and Teller) method, and simultaneous thermal analysis (STA). SEM and TEM... 

    Synthesis of new hybrid nanomaterials: Promising systems for cancer therapy

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 7, Issue 6 , 2011 , Pages 806-817 ; 15499634 (ISSN) Adeli, M ; Kalantari, M ; Parsamanesh, M ; Sadeghi, E ; Mahmoudi, M ; Sharif University of Technology
    2011
    Abstract
    Polyrotaxanes consisting of cyclodextrin rings, polyethylene glycol axes and quantum dot (QD) stoppers were synthesized and characterized. The molecular self-assembly of polyrotaxanes led to spindlelike nano-objects whose shape, size and position were dominated by QD stoppers. Due to their well-defined molecular self-assemblies, carbohydrate backbone, high functionality and several types of functional groups together with the high luminescence yield, synthesized hybrid nanostructures were recognized as promising candidates for biomedical applications. The potential applications of the molecular self-assemblies as drug-delivery systems was investigated by conjugation of doxorubicin (DOX) to...