Loading...
Search for: pore-space
0.008 seconds

    Simulation of Residual Oil Displacement at the Pore-scale

    , M.Sc. Thesis Sharif University of Technology Farrokhnia Hamedani, Bahareh (Author) ; Moosavi, Ali (Supervisor) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    EOR (oil enhanced recovery) is very important as oil is a nonrenewable resource. Depending on the characteristics of the rock formation, primary production can result in the recovery of up to 20% of the oil originally in the rock. This means that at least 80% of the oil may remain in the rock unless additional technology is used to increase the recovery. Before finding best way to do for EOR, scientists must study properties of different porous media that oil is trapped between its grains. Most of research and studies investigate networks of porous media but this work focused on oil movement through a pore space in porous media lonely not in network by waterflooding. Studying a pore space is... 

    Modeling of Non-Darcy flow through anisotropic porous media: Role of pore space profiles

    , Article Chemical Engineering Science ; Volume 151 , 2016 , Pages 93-104 ; 00092509 (ISSN) Veyskarami, M ; Hassani, A. H ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Excess pressure drop induced by inertial effects limits the applicability of Darcy's law for modeling of fluid flow through porous media at high velocities. It is expected such additional pressure drop is influenced by pore/morphology of porous media. This work concerns with fundamental understanding of how throat curvature affects intrinsic properties of porous media at non-Darcy flow conditions using network modeling. Conical, parabolic, hyperbolic, and sinusoidal capillary ducts with three types of imposed anisotropy are used to construct the network in a more realistic manner. Solutions of one dimensional Navier-Stokes equation for incompressible fluid flow through converging/diverging... 

    Application of Multiscale methods for Modeling Spatial Heterogeneity in Complex Reservoirs

    , M.Sc. Thesis Sharif University of Technology Hajizadeh Mobaraki, Alireza (Author) ; Farhadpour, Farhad A (Supervisor) ; Sayf Kordi, Ali Akbar (Supervisor)
    Abstract
    Underground reservoirs are highly complicated due to the presence of spatial heterogeneities at length scales that span from micrometer in pore structure of the rocks to kilometer in the reservoir models. While large-scale flow units need to be characterized using seismic and well data, detailed displacements of fluids in pore space need to be modeled using thin section analysis and pore network modeling. It is therefore necessary to adopt a multi-scale approach to reservoir description to make best use of all the available data that vary over several orders of magnitude, from micro-scale in pore structure to field scale in reservoir flow models. In this thesis, an integrated framework for... 

    A new insight into onset of inertial flow in porous media using network modeling with converging/diverging pores

    , Article Computational Geosciences ; Volume 22, Issue 1 , February , 2018 , Pages 329-346 ; 14200597 (ISSN) Veyskarami, M ; Hassani, A. H ; Ghazanfari, M. H ; Sharif University of technology
    Springer International Publishing  2018
    Abstract
    The network modeling approach is applied to provide a new insight into the onset of non-Darcy flow through porous media. The analytical solutions of one-dimensional Navier-Stokes equation in sinusoidal and conical converging/diverging throats are used to calculate the pressure drop/flow rate responses in the capillaries of the network. The analysis of flow in a single pore revealed that there are two different regions for the flow coefficient ratio as a function of the aspect ratio. It is found that the critical Reynolds number strongly depends on the pore geometrical properties including throat length, average aspect ratio, and average coordination number of the porous media, and an... 

    Nanotechnology-assisted EOR techniques: New solutions to old challenges

    , Article Society of Petroleum Engineers - SPE International Oilfield Nanotechnology Conference 2012 ; 2012 , Pages 382-396 ; 9781622761104 (ISBN) Ayatollahi, S ; Zerafat, M. M ; Sharif University of Technology
    SPE  2012
    Abstract
    Enhanced Oil Recovery techniques are gaining more attention worldwide as the proved oil reserves are declining and the oil price is hiking. Although many giant oil reservoirs in the world were already screened for EOR processes, the main challenges such as low sweep efficiency, costly techniques, possible formation damages, transportation of huge amounts of EOR agents to the fields especially for offshore cases, analyzing micro-scale multi-phase flow in the rock to the large scale tests and the lack of analyzing tools in traditional experimental works, hinder the proposed EOR processes. Our past experiences on using nanotechnology to the upstream cases, especially EOR processes, revealed... 

    Numerical study of factors influencing relative permeabilities of two immiscible fluids flowing through porous media using lattice Boltzmann method

    , Article Journal of Petroleum Science and Engineering ; Volume 77, Issue 1 , 2011 , Pages 135-145 ; 09204105 (ISSN) Ghassemi, A ; Pak, A ; Sharif University of Technology
    Abstract
    Relative permeability curves have practical implications in petroleum reservoir simulations. Study of the effects of reservoir wettability, pore shape geometry, and viscosity ratio of flowing fluids on the relative permeabilities is of great importance in reservoir modeling. In this paper, lattice Boltzmann method (LBM) is employed for analyzing the two-fluid flow in rigid porous media. The developed LBM code proved to be a robust numerical tool for analyzing the factors that influence the relative permeabilities of two immiscible fluids flowing through porous media. The numerically derived relative permeability curves demonstrate that in neutrally wet reservoirs, the effect of viscosity... 

    Evolution of pore-scale morphology of oil shale during pyrolysis: a quantitative analysis

    , Article Transport in Porous Media ; Volume 119, Issue 1 , 2017 , Pages 143-162 ; 01693913 (ISSN) Rabbani, A ; Baychev, T. G ; Ayatollahi, S ; Jivkov, A. P ; Sharif University of Technology
    Abstract
    Changes of morphological parameters of oil shale under thermal conditions are investigated. Analyses are based on 26 micro-computed tomography (micro-CT) images of Green River immature shale rock available under creative commons license. Several image processing and characterization algorithms are applied to sequential high-resolution micro-CT images of oil shale samples undergoing pyrolysis. Pore-scale morphology is extracted and quantified, providing results for pore size, throat size, grain size, specific surface, coordination number, and fracture aperture. The results demonstrate critical increases of porosity, coordination number and fracture aperture in the temperature range from 390... 

    Pore level characterization of Micro-CT images using percolation theory

    , Article Journal of Petroleum Science and Engineering ; Volume 211 , 2022 ; 09204105 (ISSN) Masihi, M ; Shams, R ; King, P. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Flow through porous media depends strongly on the spatial distribution of the geological heterogeneities which appear on all length scales. We lack precise information about heterogeneity distribution on various scales, from pore level to reservoir scale. However, some sources provide suitable information. At pore scale, for example, the micro-CT images show considerable insights into pore space structures and play valuable role in porous media characterization. The consequence of all geological heterogeneities is a great deal of uncertainty in dynamic performance of porous media which can be investigated using percolation theory. The main percolation quantities include the connected pore... 

    Contribution of water-in-oil emulsion formation and pressure fluctuations to low salinity waterflooding of asphaltic oils: A pore-scale perspective

    , Article Journal of Petroleum Science and Engineering ; Volume 203 , 2021 ; 09204105 (ISSN) Salehpour, M ; Sakhaei, Z ; Salehinezhad, R ; Mahani, H ; Riazi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    During the low salinity waterflooding (LSWF) of a viscous asphaltic oil reservoir, fluid-fluid interactions have a large influence on the fluid flow, pore-scale events, and thus oil recovery efficiency and behavior. In-situ water-in-oil (W/O) emulsion formation is a consequence of crude oil and brine interfacial activities. Despite the published studies, the pore-scale mechanisms of W/O emulsion formation and the role of injected brine salinity, injection rate, and pore-scale heterogeneity on emulsion formation and stability requires a deeper understanding. To address these, a series of static and dynamic micro-scale experiments were performed. The salinity dependent oil-brine interactions... 

    A multiple-point statistics algorithm for 3D pore space reconstruction from 2D images

    , Article Advances in Water Resources ; Volume 34, Issue 10 , October , 2011 , Pages 1256-1267 ; 03091708 (ISSN) Hajizadeh, A ; Safekordi, A ; Farhadpour, F. A ; Sharif University of Technology
    2011
    Abstract
    Fluid flow behavior in a porous medium is a function of the geometry and topology of its pore space. The construction of a three dimensional pore space model of a porous medium is therefore an important first step in characterizing the medium and predicting its flow properties. A stochastic technique for reconstruction of the 3D pore structure of unstructured random porous media from a 2D thin section training image is presented. The proposed technique relies on successive 2D multiple point statistics simulations coupled to a multi-scale conditioning data extraction procedure. The Single Normal Equation Simulation Algorithm (SNESIM), originally developed as a tool for reproduction of... 

    Semi-empirical modelling of hydraulic conductivity of clayey soils exposed to deionized and saline environments

    , Article Journal of Contaminant Hydrology ; Volume 249 , 2022 ; 01697722 (ISSN) Hedayati Azar, A ; Sadeghi, H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Clay liners are widely used as porous membrane barriers to control solute transport and to prevent the leakage of leachate both in horizontal and vertical flow scenarios, such as the isolated base and ramps of sanitary landfills. Despite the primary importance of saturated hydraulic conductivity in a reliable simulation of fluid flow through clay barriers, there is no model to predict hydraulic conductivity of clayey soils permeated with saline aqueous solutions because most of the current models were developed for pure water. Therefore, the main motivation behind this study is to derive semi-empirical models for simulating the hydraulic conductivity of clayey soils in the presence of...