Loading...
Search for: polymer-based-composite
0.01 seconds

    Repairing of Metallic Pressure Fitting Using Polymer-Based Composites by Utilizing Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Shafieian, Maryam (Author) ; Abedian, Ali (Supervisor)
    Abstract
    Billions of dollars are spent annually repairing broken or damaged pipes and fittings. The bulk of these costs relate to traditional methods used to repair and rehabilitate pipelines, such as replacing the desired part or using steel sleeves on the damaged part, this operation requires shutting down the service, which is costly. Uncertainty about the reliability and durability of existing repair methods has created the need to develop and provide a fast, safe, economical and safe way to repair pipelines and fittings. This need has been met by using the capabilities and potentials of composites, and composites have replaced traditional methods that reduce costs and time. In this project, the... 

    Thermal and electrical conductivity of a graphene-based hybrid filler epoxy composite

    , Article Journal of Materials Science ; Volume 56, Issue 27 , 2021 , Pages 15151-15161 ; 00222461 (ISSN) Nouri Borujerdi, A ; Kazemi Ranjbar, S ; Sharif University of Technology
    Springer  2021
    Abstract
    The development of polymer-based composites with thermal transport capability has now become essential in response to the efficient thermal management required in electronic and energy conversion devices. In this work, a novel hybrid filler consisting of graphene nanoplatelet (GNP) and boron nitride microparticles (micro-BN) is used to improve the thermal conductivity of epoxy composite. The GNPs with an average lateral size of 8 µm and an average thickness of 5 nm are in the same volume range with the 1 µm size micro-BN particles. According to the results, the thermal conductivity of the composites changes abruptly with increasing micro-BN loading at fixed GNP loading, which is attributed... 

    A simple route to synthesize zirconia antistatic thin films on glass substrates and their application to polymer-based composites

    , Article Materials Chemistry and Physics ; Volume 244 , 1 April , 2020 Naderi, A ; Dolati, A ; Afshar, A ; Palardy, G ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, zirconia antistatic coatings were synthesized by a simple dip coating sol-gel route on glass substrates, then applied to polymer-based composites to potentially improve their dust or water repellent capabilities. The coating solution contained a precursor (ZrCl4), solvent (isopropanol) and coupling agent. FTIR spectra confirmed ZrO2 and ZrO compounds in both solution and antistatic coating. FE-SEM images indicated ZrO2 fibers’ thickness was controlled by changing ZrCl4 concentration (150 g–15 g ZrCl4/l) or relative humidity (20%–60%) during coating drying. Fibers grew thicker when decreasing the former or increasing the latter. The surface electrical resistivity for all... 

    Synthesis of nanobentonite–poly(vinyl alcohol)–bacterial cellulose nanocomposite by electrospinning for wound healing applications

    , Article Physica Status Solidi (A) Applications and Materials Science ; Volume 217, Issue 6 , 2020 Zeaiean Firouzabadi, P ; Ghanbari, H ; Mahmoudi, N ; Haramshahi, S. M. A ; Javadpour, J ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Polymer-based composites are used for wound healing applications. This work aims to prepare an inorganic-polymer nanocomposite based on bentonite, poly(vinyl alcohol), and bacterial cellulose by electrospinning for wound healing. The nanocomposite is synthesized using a solution intercalation technique, with 1–2 wt% nanobentonite concentration variation. The effects of commercial and laboratory-synthesized nanobentonite as well as the extract of the green walnut shell (EGWS) are examined and characterized by different techniques. The addition of nanobentonite increases the average size of fibers and tensile strength up to 200 nm and more than 15 MPa, respectively, due to the presence of... 

    Developing a novel technique for the fabrication of PLA-graphite composite filaments using FDM 3D printing process

    , Article Ceramics International ; Volume 48, Issue 21 , 2022 , Pages 31850-31858 ; 02728842 (ISSN) Mohammadi Zerankeshi, M ; Sayedain, S. S ; Tavangarifard, M ; Alizadeh, R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Developing a uniform polymer-based composite filament is a critical factor for a successful 3D printing process. In this regard, a novel technique for the fabrication of PLA-graphite filament with the potential to be applied to other PLA-based composite filaments was proposed and compared to the solvent casting method. This modified mixing technique involves partial dissolution of the PLA pellets surface by dichloromethane (DCM), which creates a sticky surface for the strong adhesion of reinforcement powders. The manufactured composite filament by this method exhibited excellent structural features, while the solvent casting method yielded a heterogeneous filament with a non-uniform diameter... 

    Improving mechanical properties and biocompatibility of 3D printed PLA by the addition of PEG and titanium particles, using a novel incorporation method

    , Article Bioprinting ; Volume 27 , 2022 ; 24058866 (ISSN) Asadollahi, M ; Gerashi, E ; Zohrevand, M ; Zarei, M ; Sayedain, S. S ; Alizadeh, R ; Labbaf, S ; Atari, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Polylactic acid (PLA) scaffolds produced by the fused deposition modeling (FDM) method have biocompatibility, close Young's modulus to that of bone, and the ability to make complex shapes. However, PLA has some drawbacks like brittleness, inappropriate mechanical strength and hydrophobicity, and a low degradation rate. In this study, polyethylene glycol (PEG) (5 and 10 wt%) by solving method and titanium (Ti) particles (5 wt%) by two different methods were mixed with PLA to address the mentioned problems. Extruded filaments were investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and fourier transform infrared (FTIR). Surface morphology of the produced filaments...