Loading...
Search for: photovoltaic-cells
0.006 seconds
Total 80 records

    Design and Development of a Space Solar Panel Electronic Simulator

    , M.Sc. Thesis Sharif University of Technology Mahmoudi, Hiwa (Author) ; Faez, Rahim (Supervisor) ; Taher Bane, Mohsen (Co-Advisor)
    Abstract
    The main power source of many space systems, are solar panels which are mainly affected from irradiance, temperature and particles radiation and an electronic solar panel simulator is a power-supply system that simulates the output of the solar panel. This system by processing of input data such as environment conditions, panel specifications and etc, simulate panel behavior and it can set the IV curve of the panel in different conditions. In this thesis, after introducing electronic solar panel simulators (chapter one), photovoltaic cells (chapter two) and space environment and its effects on space systems (chapter three), modeling solar panel based on the equivalent circuit of a solar... 

    An experimental study on using natural vaporization for cooling of a photovoltaic solar cell

    , Article International Communications in Heat and Mass Transfer ; Volume 65 , 2015 , Pages 22-30 ; 07351933 (ISSN) Ebrahimi, M ; Rahimi, M ; Rahimi, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    This study attempts to investigate a new way for cooling PV cell using natural vapor as coolant. The performance of solar cell was examined on simulated sunlight. The natural vapor encountered backside of PV cell vertically in various distribution and different mass flow rates. Also, the effect of natural vapor temperature in cooling performance was analyzed. Results indicated that the temperature of PV cell drops significantly with increasing natural vapor mass flow rate. In detail, the PV cell temperature decreased about 7 to 16°C when flow rate reaches 1.6 to 5grmin-1. It causes increasing electrical efficiency about 12.12% to 22.9%. The best performance of PV cell can be achieved at high... 

    Simulation and Building a Self-Cleaning/Cooling Solar Panel System

    , M.Sc. Thesis Sharif University of Technology Salari, Ali (Author) ; Hakkaki-Fard, Ali (Supervisor)
    Abstract
    Nowadays by fast growing the population and development of countries, the demand of energy is increasing rapidly. Solar energy is one of the most reliable and environment friendly source of energy. Photovoltaic modules (PV) are such a solar systems that is able to convert solar energy into electrical energy. However, some parameters such as increasing cell temperature and dust accumulation can reduce the PV modules efficiency. Increasing the cell temperature reduce the capability of electrical production of cells and dust accumulation is an obstacle for solar radiation absorption. As a result, in this research tempt to solve these problems by building a new device for PV modules. In this... 

    Surface Passivation of PbS Colloidal Quantum Dots for Photovoltaic Applications

    , Ph.D. Dissertation Sharif University of Technology Tavakkoli, Mohammad Mahdi (Author) ; Simchi, Abdolreza (Supervisor) ; Ashuri, Hossein (Supervisor)
    Abstract
    Solution-processed quantum dots (QDs) have attracted significant attention for the low-cost fabrication of optoelectronic devices. Here, we synthesized PbS QDs via hot injection method and passivated the trap states by using short thiols and dopant elements for photovoltaic application. In order to study the effect of dopants on photovoltaic application, PbS QDs were doped by using three different cations: Cadmium, Calcium, and Zinc. The results showed that Cd dopant has a better improvement than Ca and Zn dopants in order to increase the efficiency of the PbS QDs solar cells. We achieved solar power conversion efficiencies of 5.81% using Cd therapy. Recently, hybrid nanocomposites... 

    Assessment of Optimal Power Flow (OPF)Uncertainty in Hybrid Wind- PV Power Systems

    , M.Sc. Thesis Sharif University of Technology Aien, Morteza (Author) ; Fotouhi Firouzabad, Mahmoud (Supervisor)
    Abstract
    As a matter of fact, power systems are always faced with a variety of uncertainties. These uncertainties change system parameters in an unwanted manner which may deteriorate the system security and reliability. For instance, a transmission line which is designed for a certain capacity may be suffered as a result of load increment and consequently may influence the normal operation of other network elements. In recent years, as a result of environmental considerations and especially after the oil shock at 1973 which caused the the energy prices to increase unprecedentedly, the human has taken more attention to renewable energies exploitation. Theses energies have a fluctuating nature and are... 

    Introducing a novel method for improving the design of off-grid photovoltaic systems

    , Article 2019 Smart Gird Conference, SGC 2019, 18 December 2019 through 19 December 2019 ; 2019 ; 9781728158945 (ISBN) Davoudi, M ; Moeini Aghtaie, M ; Mosaddegh, H. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Using the potential of off-grid photovoltaic systems is a feasible way to supply electrical energy to locations which are far from the national electricity grid. In the design process of these systems, it is important to choose an appropriate capacity of these panels, since it should be able to steadily supply energy in all-weather conditions, especially cloudy days. In the conventional algorithm to design these panels and determine the capacity of these photovoltaic arrays, the number of cloudy days is not considered. Thus, in this papers, a new method is introduced in order to find out the appropriate capacity of off-grid photovoltaic arrays in the planning process of these systems. © 2019... 

    Phase identification of singlephase customers and PV panels via smart Meter data

    , Article IEEE Transactions on Smart Grid ; Volume 12, Issue 5 , 2021 , Pages 4543-4552 ; 19493053 (ISSN) Heidari-Akhijahani, A ; Safdarian, A ; Aminifar, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    With proliferation of single-phase rooftop photovoltaic (PV) panels, phase balancing in low voltage (LV) distribution feeders becomes the point of concern. In this way, identification of the hosting phase of connected single-phase customers and PV panels is a prerequisite. This paper proposes an optimization model for the phase identification problem. The objective is to minimize the summation of the absolute error between estimated and measured variables. Smart meters (SMs) data including active and reactive power absorptions/injections, nodal voltage magnitudes, and network configuration data form the input of the model. Potential errors in the input data are captured in the model while... 

    A novel thermo-photovoltaic cell with quantum-well for high open circuit voltage

    , Article Superlattices and Microstructures ; Volume 83 , July , 2015 , Pages 61-70 ; 07496036 (ISSN) Kouhsari, E. S ; Faez, R ; Akbari Eshkalak, M ; Sharif University of Technology
    Academic Press  2015
    Abstract
    Abstract We design a thermo-photovoltaic Tandem cell which produces high open circuit voltage (Voc) that causes to increase efficiency (η). The currently used materials (AlAsSb-InGaSb/InAsSb) have thermo-photovoltaic (TPV) property which can be a p-n junction of a solar cell, but they have low bandgap energy which is the reason for lower open circuit voltage. In this paper, in the bottom cell of the Tandem, there is 30 quantum wells which increase absorption coefficients and quantum efficiency (QE) that causes to increase current. By increasing the current of the bottom cell, the top cell thickness must be increased because the top cell and the bottom cell should have the same current. In... 

    Improvement of Perovskite Coating to Increase Operation Efficiency of Photovoltaic Cells

    , Ph.D. Dissertation Sharif University of Technology Zarenezhad, Hamaneh (Author) ; Askari, Masoud (Supervisor) ; Halali, Mohammad (Supervisor)
    Abstract
    In this work, polyvinylidene difluoride (PVDF) as a ferroelectric polymer, polyaniline (PANI) and polypyrrole (PPy) as conductive polymer additives are used to fabricate high performance mesoporous CH3NH3PbI3-xClx mixed-halide perovskite solar cells in a sequential deposition method. Using polymer additives in perovskite precursor solution leads to modification of perovskite layer morphology by changing nucleation and growth of perovskite grains. Besides, conductive polymer additives in perovskite layer help to more charge carrier transfer. Power conversion efficiency has been enhanced from 10.40 % to 16.51% and to 13.21 % in ambient atmosphere in the presence of 1.0 wt. % of PVDF and PPy... 

    Modeling Solar Hydrogen Fuel Cell System for Residential Application

    , M.Sc. Thesis Sharif University of Technology Sayedin, Farid (Author) ; Roshandel, Ramin (Supervisor)
    Abstract
    The gradual exhaustion of oil and gas resources and the various problems involved in their pollution makes it necessary to promote a renewable energy system. One of the most interesting developments of standalone systems based on the utilization of hydrogen is solar hydrogen system. Central and southern Iran exhibit an excellent solar climate which makes them ideal places for solar hydrogen systems. The economy of Iran is based on oil and it has one of the largest reserves of oil and gas in the world but the reserves would not be enough to meet the domestic and export markets starting in three to four decades. Moreover, elimination of energy subsidies in Iran, will led to more tendencies to... 

    Synthesis and Evalouation of photovoltaic Properties of Lead-halid Perovskite

    , M.Sc. Thesis Sharif University of Technology Nejadsalim, Aidin (Author) ; Simchi, Abdolreza (Supervisor) ; Ashouri, Hossein (Supervisor)
    Abstract
    Organometal lead halides due to their interesting optical properties and convenient synthesis processing have attracted many attention recently. In this project, fabrication of lead halide perovskite solar cells through one-step deposition and two-step deposition with different holding time of PbI2 layers in various concentration of CH3NH3I solution as a second precursor within the ambient and glove box atmosphere has been studied. Structural, microscopic and photovoltaic properties of fabricated solar cells were evaluated. Moreover effect of delay time during PbI2 deposition on TiO2 mesoporous layer in performance of perovskite solar cell using Energy Dispersive Spectroscopy was studied.... 

    Probabilistic power flow of correlated hybrid wind-photovoltaic power systems

    , Article IET Renewable Power Generation ; Vol. 8, issue. 6 , 2014 , p. 649-658 ; ISSN: 17521416 Aien, M ; Khajeh, M. G ; Rashidinejad, M ; Fotuhi-Firuzabad, M ; Sharif University of Technology
    Abstract
    As a matter of course, the unprecedented ascending penetration of distributed energy resources, mainly harvesting renewable energies such as wind and solar, is concomitant with environmentally friendly concerns. This type of energy resources are innately uncertain and bring about more uncertainties in the power system context, consequently, necessitates probabilistic analysis of the system performance. Moreover, the uncertain parameters may have a considerable level of correlation to each other, in addition to their uncertainties. The two point estimation method (2PEM) is recognised as an appropriate probabilistic method. This study proposes a new methodology for probabilistic power flow... 

    Optimizing size and operation of hybrid energy systems

    , Article Proceedings of the 2013 IEEE 7th International Power Engineering and Optimization Conference, PEOCO 2013 ; 2013 , p. 489-494 ; ISBN: 9781470000000 Ghazvini, M ; Abbaspour-Tehrani-Fard, A ; Fotuhi-Firuzabad, M ; Othman, M. M ; Sharif University of Technology
    Abstract
    This paper presents a new method to simultaneously optimize components' size, set points of the control system and slope of PV panels of standalone hybrid energy systems (HESs) using the Passive Congregation PSO (PSOPC) approach. New control set points are defined for the HES, and a new operation strategy is presented based on the defined set points. The optimization algorithm determines the optimal values of the set points to efficiently optimize the HES operation. The effectiveness of the proposed control set points is finally verified through some numerical analyses. In this regard, the proposed optimization method is employed to optimize various HES configurations and compared with other... 

    System modeling and optimization for islanded micro-grid using multi-cross learning-based chaotic differential evolution algorithm

    , Article International Journal of Electrical Power and Energy Systems ; Vol. 56 , 2014 , pp. 349-360 ; ISSN: 01420615 Hemmati, M ; Amjady, N ; Ehsan, M ; Sharif University of Technology
    Abstract
    This paper presents a comprehensive operation model for micro-grids (MG) operating in the islanded mode. Various energy sources of a MG including diesel engine generator, micro-turbine, wind turbine and photovoltaic cell as well as battery storage and AC/DC rectifier/inverter are modeled in the proposed framework. Fuel costs, emission costs, and operation and maintenance (O&M) costs of these sources as well as their operating limits and characteristics are considered in the model. Furthermore, a new multi-cross learning-based chaotic differential evolution (MLCDE) algorithm is presented to solve the optimization problem of MG operation. The numerical results obtained from the proposed... 

    Modeling and technical-economic optimization of electricity supply network by three photovoltaic systems

    , Article Journal of Solar Energy Engineering, Transactions of the ASME ; Vol. 136, issue. 2 , 2014 ; ISSN: 0199-6231 Safarian, S ; Khodaparast, P ; Kateb, M ; Sharif University of Technology
    Abstract
    To attain an ongoing electricity economy, developing novel widespread electricity supply systems based on diverse energy resources are critically important. Several photovoltaic (PV) technologies exist, which cause various pathways to produce electricity from solar energy. This paper evaluates the competition between three influential solar technologies based on photovoltaic technique to find the optimal pathways for satisfying the electricity demand: (1) multicrystalline silicon; (2) copper, indium, gallium, and selenium (CIGS); and (3) multijunction. Besides the technical factors, there are other effective parameters such as cost, operability, feasibility, and capacity that should be... 

    Multi-objective optimization of direct coupling photovoltaic-electrolyzer systems using imperialist competitive algorithm

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Vol. 6A , November , 2014 Maroufmashat, A ; Sayedin, F ; Sattari, S ; Sharif University of Technology
    Abstract
    Photovoltaic-electrolyzer systems are one of the most promising alternatives for obtaining hydrogen from a renewable energy source. Determining size and the operational conditions are always a key issue while coupling directly renewable electricity sources to PEM electrolyzer. In this research, the multi objective optimization approach based on an imperialist competitive algorithm (ICA), which is employed to optimize the size and the operating conditions of a directly coupled photovoltaic (PV)-PEM electrolyzer. This allows the optimization of the system by considering two different objectives, including, minimization of energy transfer loss and maximization of hydrogen generation. Multi... 

    A decentralized control method for a low-voltage dc microgrid

    , Article IEEE Transactions on Energy Conversion ; Vol. 29, issue. 4 , Dec , 2014 , p. 793-801 ; 08858969 Khorsandi, A ; Ashourloo, M ; Mokhtari, H ; Sharif University of Technology
    Abstract
    DC microgrids (DC-MGs) are becoming popular as an effective means to integrate various renewable energy resources. Conventionally, the droop control is adopted as a decentralized control strategy for proper power sharing without using any communication link. However, the conventional droop control often deteriorates due to the effects of unequal line resistances. In this paper, a control strategy is proposed for a DC-MG to achieve perfect power sharing considering the effects of line resistances. The DC-MG under study consists of a photovoltaic system, two energy storage systems, a grid-connected converter system, and dc loads. The control strategy of the converters is addressed under... 

    Stable operation of grid connected Cascaded H-Bridge inverter under unbalanced insolation conditions

    , Article 2013 3rd International Conference on Electric Power and Energy Conversion Systems, EPECS 2013 2013 ; 2013 ; 9781479906888 (ISBN) Eskandari, A ; Javadian, V ; Iman Eini, H ; Yadollahi, M ; Sharif University of Technology
    2013
    Abstract
    This paper presents a single-phase Cascaded H-Bridge (CHB) inverter for photovoltaic applications. The proposed control strategy permits the optimum control of each string of PV panels in different insolation conditions. Based on the presented mathematical analysis, an analytic constraint is derived to check the stable operation of the inverter. A modified MPPT control strategy is also proposed based on this new condition. This strategy enhances the stability margins of the system by changing the operating point of some PV arrays. In this approach, the extracted power from high power cell is reduced to prevent instability issue and to avoid injection of highly distorted current into the... 

    Optimizing size and operation of hybrid energy systems

    , Article Proceedings of the 2013 IEEE 7th International Power Engineering and Optimization Conference, PEOCO 2013, Langkawi ; 2013 , Pages 489-494 ; 9781467350730 (ISBN) Ghazvini, M ; Abbaspour Tehrani Fard, A ; Fotuhi Firuzabad, M ; Othman, M. M ; Sharif University of Technology
    2013
    Abstract
    This paper presents a new method to simultaneously optimize components' size, set points of the control system and slope of PV panels of standalone hybrid energy systems (HESs) using the Passive Congregation PSO (PSOPC) approach. New control set points are defined for the HES, and a new operation strategy is presented based on the defined set points. The optimization algorithm determines the optimal values of the set points to efficiently optimize the HES operation. The effectiveness of the proposed control set points is finally verified through some numerical analyses. In this regard, the proposed optimization method is employed to optimize various HES configurations and compared with other... 

    Evolutionary optimization approaches for direct coupling photovoltaic-electrolyzer systems

    , Article IEOM 2015 - 5th International Conference on Industrial Engineering and Operations Management, Proceeding, 3 March 2015 through 5 March 2015 ; 2015 ; 9781479960651 (ISBN) Sayedin, F ; Maroufmashat, A ; Al-Adwani, S ; Khavas, S. S ; Elkamel, A ; Fowler, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Hydrogen is an important storage medium and can be produced by the water electrolysis. In this research, energy transfer loss between a photovoltaic (PV) unit and electrolyzer is minimized by optimizing the size and operating condition of an electrolyzer directly connected to a PV module. In directly coupled photovoltaic-electrolyzer (PV/EL) systems, there is a mismatch between output PV's maximum power point characteristic and input PEM electrolyzer's characteristic. With proper sizing optimization methods, it is possible to directly couple photovoltaic-electrolyzer systems. The evolutionary optimization algorithms like genetic algorithm (GA), particle swarm optimization (PSO) and...