Loading...
Search for: photovoltaic
0.011 seconds
Total 282 records

    Improvement of the photovoltaic parameters of perovskite solar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter

    , Article Physical Chemistry Chemical Physics ; Volume 20, Issue 4 , 2018 , Pages 2388-2395 ; 14639076 (ISSN) Nouri, E ; Mohammadi, M. R ; Xu, Z. X ; Dracopoulos, V ; Lianos, P ; Sharif University of Technology
    Royal Society of Chemistry  2018
    Abstract
    Functional perovskite solar cells can be made by using a simple, inexpensive and stable soluble tetra-n-butyl-substituted copper phthalocyanine (CuBuPc) as a hole transporter. In the present study, TiO2/reduced graphene oxide (T/RGO) hybrids were synthesized via an in situ solvothermal process and used as electron acceptor/transport mediators in mesoscopic perovskite solar cells based on soluble CuBuPc as a hole transporter and on graphene oxide (GO) as a buffer layer. The impact of the RGO content on the optoelectronic properties of T/RGO hybrids and on the solar cell performance was studied, suggesting improved electron transport characteristics and photovoltaic parameters. An enhanced... 

    Improving performance of a photovoltaic panel by pin fins: a theoretical analysis

    , Article Iranian Journal of Science and Technology - Transactions of Mechanical Engineering ; Volume 44, Issue 4 , 2020 , Pages 997-1004 Sedaghat, A ; Karami, M. R ; Eslami, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    As efficiency of PV modules decreases with temperature rise, cooling methods can increase the power output and efficiency. One of the strategies for this purpose is passive cooling by implementing fins to the backside of a module. In the present study, annual energy output of a 50 W panel is analytically calculated in two unfinned and pin-finned cases based on hourly meteorological data for Shiraz, Iran. The results show that with the installation of 2-cm, 4-cm and 6-cm aluminum pin fins with finned-to-total-backside-area ratios of 0.17, 0.27 and 0.55, the power output increases by 1.24–4.16%, compared to the unfinned case. This increase is equivalent to 1.04–3.50 kWh more electrical energy... 

    A numerical study of dust deposition effects on photovoltaic modules and photovoltaic-thermal systems

    , Article Renewable Energy ; Volume 135 , 2019 , Pages 437-449 ; 09601481 (ISSN) Salari, A ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Dust deposition on the surface of solar systems is one of the main parameters that significantly affects the performance of such systems. In this study, the effect of dust deposition density on the performance of photovoltaic modules (PV) and photovoltaic-thermal systems (PVT) is numerically investigated. Accordingly, all layers of a monocrystalline silicon PV module for both systems are simulated. Moreover, the effect of various system parameters on the performance of both clean and dusty PV module and PVT system are studied. The studied parameters included: solar radiation intensity, ambient temperature, coolant inlet temperature, and coolant inlet velocity. The obtained results indicate... 

    Introducing a novel method for improving the design of off-grid photovoltaic systems

    , Article 2019 Smart Gird Conference, SGC 2019, 18 December 2019 through 19 December 2019 ; 2019 ; 9781728158945 (ISBN) Davoudi, M ; Moeini Aghtaie, M ; Mosaddegh, H. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Using the potential of off-grid photovoltaic systems is a feasible way to supply electrical energy to locations which are far from the national electricity grid. In the design process of these systems, it is important to choose an appropriate capacity of these panels, since it should be able to steadily supply energy in all-weather conditions, especially cloudy days. In the conventional algorithm to design these panels and determine the capacity of these photovoltaic arrays, the number of cloudy days is not considered. Thus, in this papers, a new method is introduced in order to find out the appropriate capacity of off-grid photovoltaic arrays in the planning process of these systems. © 2019... 

    A decentralized control method for a low-voltage dc microgrid

    , Article IEEE Transactions on Energy Conversion ; Vol. 29, issue. 4 , Dec , 2014 , p. 793-801 ; 08858969 Khorsandi, A ; Ashourloo, M ; Mokhtari, H ; Sharif University of Technology
    Abstract
    DC microgrids (DC-MGs) are becoming popular as an effective means to integrate various renewable energy resources. Conventionally, the droop control is adopted as a decentralized control strategy for proper power sharing without using any communication link. However, the conventional droop control often deteriorates due to the effects of unequal line resistances. In this paper, a control strategy is proposed for a DC-MG to achieve perfect power sharing considering the effects of line resistances. The DC-MG under study consists of a photovoltaic system, two energy storage systems, a grid-connected converter system, and dc loads. The control strategy of the converters is addressed under... 

    Highly efficient and stable perovskite solar cells based on a low-cost carbon cloth

    , Article Advanced Energy Materials ; Volume 6, Issue 20 , 2016 ; 16146832 (ISSN) Gholipour, S ; Correa Baena, J. P ; Domanski, K ; Matsui, T ; Steier, L ; Giordano, F ; Tajabadi, F ; Tress, W ; Saliba, M ; Abate, A ; Morteza Ali, A ; Taghavinia, N ; Grätzel, M ; Hagfeldt, A ; Sharif University of Technology
    Wiley-VCH Verlag  2016
    Abstract
    A low-cost carbon cloth is applied in perovskite solar cells (PSC) as a collector composite and degradation inhibitor. This study incorporates carbon fibers as a back contact in perovskite solar cells, which results in enhancement in all photovoltaic parameters. This material is suitable for large-scale fabrication of PSCs as it has shown an improved long-term stability when compared to the gold counterpart under elevated temperatures  

    Load profile flattening considering EV’s initial and final SoC and arrival and departure times

    , Article Iranian Journal of Electrical and Electronic Engineering ; Volume 18, Issue 4 , 2022 ; 17352827 (ISSN) Bagheri, V ; Ehyaei, A. F ; Haeri, M ; Sharif University of Technology
    Iran University of Science and Technology  2022
    Abstract
    In distribution networks, failure to smooth the load curve leads to voltage drop and power quality loss. In this regard, electric vehicle batteries can be used to smooth the load curve. However, to persuade vehicle owners to share their vehicle batteries, we must also consider the owners' profits. A challenging problem is that existing methods do not take into account the vehicle owner demands including initial and final states of charge and arrival and departure times of vehicles. Another problem is that battery capacity of each vehicle varies depending on the type of vehicle; which leads to uncertainties in the charging and discharging dynamics of batteries. In this paper, we propose a... 

    Experimental Investigation of PVT System Combined with Thermoelectric Module

    , M.Sc. Thesis Sharif University of Technology Mohsenzadeh, Milad (Author) ; shafii, Behshad (Supervisor) ; Saboohi, Yadollah (Supervisor)
    Abstract
    Photovoltaic phenomena is the base of Photovoltaic cells technology that can transform the solar insolation to electricity directly. In this transformation, the solar insolation intensity is the important factor to increase the performance of the Photovoltaic cells but one of the biggest barriers in the extension way of this technology is its more cost that need to be decrease. Concentration of solar radiation method is the best way to increase the performance of Photovoltaic systems and decrease its initial cost. At this project a novel structure of solar parabolic through concentrator is investigated experimentally and analytically. The usage of Thermoelectric module with Photovoltaic... 

    A lifetime improved single phase grid connected photovoltaic inverter

    , Article 2012 3rd Power Electronics and Drive Systems Technology, PEDSTC 2012, 15 February 2012 through 16 February 2012 ; February , 2012 , Pages 234-238 ; 9781467301114 (ISBN) Mirzahosseini, R ; Tahami, F ; Sharif University of Technology
    2012
    Abstract
    In this paper, a reliable low power single phase grid-connected inverter for photovoltaic modules is proposed. The inverter has improved lifetime since large electrolytic capacitor is replaced with small film capacitor due to circuit topology, power processing and proper control scheme. Thus the main limiting component in single phase grid connected inverters is obviated. The proposed inverter consists of two power processing stages. First a dual active bridge (DAB) converter boosts the voltage of PV panel to approximately 440 V and eliminates impact of high dc bus voltage ripples. A proper feed forward control is proposed to regulate the dc bus voltage with high ripple. Simulation results... 

    Three-phase quasi-Z-source inverter with constant common-mode voltage for photovoltaic application

    , Article IEEE Transactions on Industrial Electronics ; 2017 ; 02780046 (ISSN) Noroozi, N ; Zolghadri, M. R ; Sharif University of Technology
    Abstract
    In trasformerless grid-connected photovoltaic (PV) systems, common-mode voltage (CMV) fluctuations cause leakage current flow through the stray capacitance of the PV panels. Shoot-through (SH) states in a quasi-Z-source inverter (q-ZSI), increase the amplitude of high order harmonics of CMV. In this paper, by using the modulation technique based on odd PWM (OPWM) and minor change in the Z network of the three-phase q-ZSI, the leakage current is blocked. No extra semiconductor element is added. By the proposed technique, CMV is kept nearly constant during switching cycles. The experimental results for CMV analysis in a 1kW prototype are presented to verify the theoretical analysis. IEEE  

    Three-Phase quasi-Z-source inverter with constant common-mode voltage for photovoltaic application

    , Article IEEE Transactions on Industrial Electronics ; Volume 65, Issue 6 , 2018 , Pages 4790-4798 ; 02780046 (ISSN) Noroozi, N ; Zolghadri, M. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In trasformerless grid-connected photovoltaic (PV) systems, common-mode voltage (CMV) fluctuations cause leakage current flow through the stray capacitance of the PV panels. Shoot-through states in a quasi-Z-source inverter (q-ZSI) increase the amplitude of high-order harmonics of CMV. In this paper, by using the modulation technique based on odd pulse width modulation and minor change in the Z network of the three-phase q-ZSI, the leakage current is blocked. No extra semiconductor element is added. By the proposed technique, CMV is kept nearly constant during switching cycles. The experimental results for CMV analysis in a 1kW prototype are presented to verify the theoretical analysis. ©... 

    Numerical investigation of the effects of a copper foam filled with phase change materials in a water-cooled photovoltaic/thermal system

    , Article Energy Conversion and Management ; Volume 163 , 2018 , Pages 187-195 ; 01968904 (ISSN) Mousavi, S ; Kasaeian, A ; Shafii, M. B ; Jahangir, M. H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The purpose of the present study is to investigate the thermal performance of a photovoltaic/thermal system, integrated with phase change materials in porous medium. For this purpose, a metal foam was employed as porous medium and the performance of five different PCMs, as organic and inorganic, were examined as well. Moreover, the effects of different key parameters such as the mass flow rate, solar irradiance, inlet water temperature and inclination were studied. Finally, the simulation results were compared with a water-cooled photovoltaic/thermal without incorporating PCMs and porous medium, and thermal performance of the three PV/T cases were reported. The highest thermal efficiency of... 

    Development of Optimal Configuration, Modeling and Control of Large Scale PV (PHOTOVOLTAIC) Parks

    , M.Sc. Thesis Sharif University of Technology Peyghami Akhooleh, Saeed (Author) ; Parniani, Mostafa (Supervisor)
    Abstract
    Environmental problems as well as energy sustainability concerns, have forced many countries to provide part of their energy from Renewable Resources (RR). Solar energy has gained a lot of attention because of the huge energy stored in the sun and its availability. Since Energy conversion via PV panels causes less environmental problems, today, hundreds of large-scale PV parks are installed and planned worldwide. Since a single PV panel provides only up to 400 Watts of power, a PV park contains a large number of PV panels. Augmenting this large number of PV panels and converting their output power to AC using DC/DC and DC/AC converters should be in a form that not only the investment cost is... 

    Reliability evaluation of a composite power system containing wind and solar generation

    , Article Proceedings of the 2013 IEEE 7th International Power Engineering and Optimization Conference, PEOCO 2013 ; 2013 , p. 483-488 ; ISBN: 9781470000000 Ghaedi, A ; Abbaspour, A ; Fotuhi-Firuzabad, M ; Moeini-Aghtaie, M ; Othman, M ; Sharif University of Technology
    Abstract
    Variability and uncertainty of wind and photovoltaic (PV) generations greatly influence technical and financial aspects of power systems. This paper examines the potential impacts of large-scale wind and PV farms on reliability level of composite generation and transmission systems. At first, reliability models of renewable-based units are developed. In these models, both component failure rates and uncertainty nature of renewable resources are taken into account. Using the proposed technique, the multi-state analytical models of a wind farm placed in Manjil and a PV farm placed in Jask both in Iran are extracted. Then, reliability studies of high renewable-energies penetrated power system... 

    Incorporating large photovoltaic farms in power generation system adequacy assessment

    , Article Scientia Iranica ; Vol. 21, issue. 3 , 2014 , p. 924-934 ; 10263098 Ghaedi, A ; Abbaspour, A ; Fotuhi-Friuzabad, M ; Parvania, M ; Sharif University of Technology
    Abstract
    Recent advancements in photovoltaic (PV) system technologies have decreased their investment cost and enabled the construction of large PV farms for bulk power generations. The output power of PV farms is affected by both failure of composed components and solar radiation variability. These two factors cause the output power of PV farms be random and different from that of conventional units. Therefore, suitable models and methods should be developed to assess different aspects of PV farms integration into power systems, particularly from the system reliability viewpoint. In this context a reliability model has been developed for PV farms with considering both the uncertainties associated... 

    Reliability evaluation of a composite power system containing wind and solar generation

    , Article Proceedings of the 2013 IEEE 7th International Power Engineering and Optimization Conference, PEOCO 2013 2013, Article , Pages 483-488 ; number 6564597 , 2013 , Pages 483-488 ; 9781467350730 (ISBN) Ghaedi, A ; Abbaspour, A ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Othman, M ; Sharif University of Technology
    2013
    Abstract
    Variability and uncertainty of wind and photovoltaic (PV) generations greatly influence technical and financial aspects of power systems. This paper examines the potential impacts of large-scale wind and PV farms on reliability level of composite generation and transmission systems. At first, reliability models of renewable-based units are developed. In these models, both component failure rates and uncertainty nature of renewable resources are taken into account. Using the proposed technique, the multi-state analytical models of a wind farm placed in Manjil and a PV farm placed in Jask both in Iran are extracted. Then, reliability studies of high renewable-energies penetrated power system... 

    An experimental study on using natural vaporization for cooling of a photovoltaic solar cell

    , Article International Communications in Heat and Mass Transfer ; Volume 65 , 2015 , Pages 22-30 ; 07351933 (ISSN) Ebrahimi, M ; Rahimi, M ; Rahimi, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    This study attempts to investigate a new way for cooling PV cell using natural vapor as coolant. The performance of solar cell was examined on simulated sunlight. The natural vapor encountered backside of PV cell vertically in various distribution and different mass flow rates. Also, the effect of natural vapor temperature in cooling performance was analyzed. Results indicated that the temperature of PV cell drops significantly with increasing natural vapor mass flow rate. In detail, the PV cell temperature decreased about 7 to 16°C when flow rate reaches 1.6 to 5grmin-1. It causes increasing electrical efficiency about 12.12% to 22.9%. The best performance of PV cell can be achieved at high... 

    Effect of crystallinity and morphology of TiO2 nano-structures on TiO2:P3HT hybrid photovoltaic solar cells

    , Article Applied Solar Energy (English translation of Geliotekhnika) ; Volume 51, Issue 1 , January , 2015 , Pages 34-40 ; 0003701X (ISSN) Boroomandnia, A ; Kasaeian, A. B ; Nikfarjam, A ; Akbarzadeh, A ; Mohammadpour, R ; Sharif University of Technology
    Allerton Press Incorporation  2015
    Abstract
    A comparative study has been made of hybrid solar cells based on poly(3-hexylthiophene) (P3HT) and different nano-structures of TiO2. Electrospinning, which is a low cost production method for large area nanofibrous films, was employed to fabricate TiO2 nanofibers and spin coating method was employed to fabricate organic-inorganic hybrid solar cells based on P3HT and TiO2 nanostructures. The performance of the hybrid solar cells was analyzed for four density levels of the TiO2 nanostructure. It was found that higher densities of TiO2 leads to more interface area and generates excitons, so that the power conversion efficiency increases to... 

    Fast maximum power point tracking for PV arrays under partial shaded conditions

    , Article 2016 18th European Conference on Power Electronics and Applications, EPE 2016 ECCE Europe25 October 2016, Article number 7695463 ; 2016 ; 9789075815245 (ISBN) Ghasemi, M. A ; Parniani, M ; Zarei, S. F ; Mohammadian Foroushani, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    P-V characteristic of photovoltaic (PV) arrays under partially shaded conditions (PSC) has multiple peaks, and conventional maximum power point tracking (MPPT) algorithms may fail to track the global maximum power point (GMPP) because of their insufficient intelligence in discriminating the local and global peaks. This paper proposes a novel fast MPPT method to achieve GMPP of PV array under all PSCs. The proposed method reduces the number of required samples and increases the speed of GMPP tracking based on comprehensive study of I-V and P-V characteristics of PV array. Performance of the proposed method has been evaluated in simulations of different PSCs. Also, its performance has been... 

    A two-step spin-spray deposition processing route for production of halide perovskite solar cell

    , Article Thin Solid Films ; Volume 616 , 2016 , Pages 754-759 ; 00406090 (ISSN) Mohammadian, N ; Alizadeh, A. H ; Moshaii, A ; Gharibzadeh, S ; Alizadeh, A ; Mohammadpour, R ; Fathi, D ; Sharif University of Technology
    Elsevier B.V 
    Abstract
    We report on fabrication of halide perovskite solar cells using a two-step spin-spray coating rout. The applied method is one of the most straight forward procedures for fabricating uniform stoichiometry and crystalline perovskite cells. To fabricate a high quality perovskite layer, various concentrations of methyl-ammonium iodide (CH3NH3I) were sprayed on a spin coated PbI2 layer using a simple airbrush gun. The characterization results indicate that the size of cuboid perovskite morphology depends on the concentration of methylammonium iodide in the spray procedure. The photovoltaic performance of the fabricated solar cells has been measured and a high dependency on the cuboid sizes was...