Loading...
Search for: photocatalyst
0.006 seconds
Total 169 records

    Recent Developments of Electrospinning-Based Photocatalysts in Degradation of Organic Pollutants: Principles and Strategies

    , Article ACS Omega ; Volume 7, Issue 50 , 2022 , Pages 45867-45881 ; 24701343 (ISSN) Samadi, M ; Moshfegh, A. Z ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Electrospinning is a simple and cheap process for forming one-dimensional (1D) nanofibers with controllable size, morphology, and chemistry. Besides these, the ultrahigh surface area with industrialization capability has attracted extensive interest in the research community. On the other hand, a photocatalytic process is a promising method for degrading organic pollutants that cannot be removed by conventional wastewater treatment. This review focuses on the recent progress of electrospun nanofibers for the photocatalytic degradation of water pollutants. The linkage between the electrospinning technique and the photocatalytic process is classified into two main categories: (1) polymeric... 

    Electrochemical synthesis of doped TNT as a nano photocatalyst for color degradation applications

    , Article Desalination and Water Treatment ; Volume 28, Issue 1-3 , 2011 , Pages 23-27 ; 19443994 (ISSN) Asl, S. K ; Kianpour Rad, M ; Sadrnezhaad, S. K ; Sharif University of Technology
    Taylor and Francis Inc  2011
    Abstract
    The preparation of high aspect-ratio TiO2 nanotubes and their photocatalytic activity were demonstrated in this study. The high aspect-ratio TiO2 nanotube thin films were produced by electrochemical anodic oxidation of Ti in chloride-containing electrolytes. Nanotubes were doped with different concentrations of ZnO particles through anodization. The catalytic behavior was evaluated under batch reactor with photo-degradation test of Red Dye. The experimental results collectively demonstrate the successful ZnO doping of the resultant nanotube layers with significant abundant OH groups on their increased surfaces. The nanotubes doped with high content combined with an anatase as a two phase... 

    Synthesis of TiO2 nano powder by the sol-gel method and its use as a photocatalyst

    , Article Journal of the Iranian Chemical Society ; Volume 7, Issue SUPPL. 1 , 2010 , Pages S154-S160 ; 1735207X (ISSN) Karami, A ; Sharif University of Technology
    2010
    Abstract
    In this work the titanium dioxide powder was prepared by the optimized and simple Sol-Gel method and then characterized. The gelling pH was set to values of 3 (TiO2-A), 7 (TiO2-N) and 9 (TiO2-B) to observe the effect on the properties of the material. In these three cases nanoparticulated materials were obtained with particle sizes between 10nm and 20nm. The larger surface areas were obtained at pH 3, which is several times larger than the others. Furthermore, with the gelling condition pH 3, it was possible to synthesize pure anatase phase titania. Some preliminary results on the test of the photocatalytic activity of the synthesized materials in the reduction of nitric oxide are presented.... 

    A mechanistic study and in-vivo toxicity bioassay on acetamiprid photodegradation over the zeolite supported cerium-based photocatalyst

    , Article Journal of Photochemistry and Photobiology A: Chemistry ; Volume 395 , 2020 Padervand, M ; Heidarpour, H ; Bargahi, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Photocatalysis is well-known as an effective tool for the removal of pollutants but its eco-friendly aspect has not been well explored in the literature. In this study, we prepared an ultraviolet-active photocatalyst by the growth of cerium oxide/sulfide nanoparticles in the zeolite channels via a facile coprecipitation method. The photocatalyst was comprehensively characterized by different analysis methods and showed good activity toward removal of acetamiprid, ACP, a commonly used insecticide. As the main focus of the current work, an in vivo bioassay was carried out to investigate the acute toxicity of the contaminant solutions before and after photoreaction. Accordingly, acetamiprid and... 

    From nitrate determination using microfluidic sensors to photocatalytic process intensification

    , Article International Journal of Environmental Analytical Chemistry ; 2020 Sohrabi, S ; Keshavarz Moraveji, M ; Mousavi, S ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    This review paper is devoted to the intensification of processes for nitrate removal. First, the developments of microfluidic sensors for nitrate detection and analysis have addressed. Second, the process variables of photocatalytic nitrate removal have been categorized according to their relationship with activity, selectivity and stability of the catalyst. The objective of this classification is to generate guidelines toward the photocatalytic process optimization. Third, because of the fact that a single method for nitrate removal faces some challenges, hybrid methods have been presented, and the best choice for nitrate removal can be referred to as photocatalytic – reverse osmosis... 

    Efficiency of mechanochemical ball milling technique in the preparation of fe/tio2 photocatalysts

    , Article ChemEngineering ; Volume 6, Issue 5 , 2022 ; 23057084 (ISSN) Taghipour, S ; Yeung, K. L ; Ataie Ashtiani, B ; Sharif University of Technology
    MDPI  2022
    Abstract
    Rapid population growth and widespread industrialization are the main contributing factors to the increasing contamination of the world’s diminishing freshwater resources. This work investigates Fe/TiO2 as an efficient and sustainable photocatalyst for treating organic micropollutants in water. The photocatalysts prepared by these mechanochemical methods used a high-energy ball milling technique to manipulate Fe/TiO2’s structural, optical, and catalytic properties for the photo-oxidation of 2,4-Dichlorophenol (2,4-DCP). Doping with iron effectively reduced the band gap of rutile TiO2 from 3 to 2.22 eV. By reducing the ball/powder ratio from 34 to 7, the removal efficiency of 2,4-DCP... 

    Intensified photodegradation of nitrobenzene using ZnO-anchored spinel cobalt ferrite: Environmental application, mechanism, and degradation pathway

    , Article Journal of Water Process Engineering ; Volume 49 , 2022 ; 22147144 (ISSN) Ahmadi, M ; Moslemzadeh, M ; Naderi, A ; Zehtab Salmasi, M ; Harati, M ; Rezaei Kalantary, R ; Kakavandi, B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Aromatic and cyclic organic compounds such as nitrobenzene (NB) are widely used in various industries and are present in their wastewater. In addition, the photocatalytic process has received considerable attention due to its lower chemical consumption and more efficient degradation of refractory pollutants. In this study, a CoFe2O4-ZnO (CFZ) composite was prepared and evaluated its efficiency in the degradation of NB from aqueous solution under UV light. The optical, structural, and physicochemical properties of catalysts were characterized using PL, UV–vis DRS, XRD, TEM, FESEM-EDS, and VSM techniques and then discussed in detail. It was found that not only does the use of CF facilitate the... 

    A Power-Law Relationship between Characteristics of Light Source and Quantum Yield in Photocatalytic Systems

    , Article Journal of Physical Chemistry C ; Volume 119, Issue 39 , July , 2015 , Pages 22425-22431 ; 19327447 (ISSN) Shidpour, R ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    A new dimensionless parameter, Sh-factor, is introduced by using dimensional analysis and extending the quantum yield definition to show power-law relations among light intensity, light wavelength, distance from light source, concentrations of dye/pollutant and photocatalyst, time, and degradation percent. The Sh-factor has the same equation form for photoactivated remediation systems with particulate and thin-film photocatalysts, and it provides mathematical tools to predict degradation performance of a photocatalytic system. These power-law equations separate simply the operational parameters related to the lamp from semiconductor photocatalyst characteristics. The light scattering and... 

    Deposition of TiO2/SiO2 Nanocomposite on Cotton Textile by Sol- Gel Method

    , M.Sc. Thesis Sharif University of Technology Raziyan, Mana (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    The synthesis and usage of nanoscaled TiO2 accompanied by the photocatalytic activity were experimented through a systematic research. The synthesis was based on the sol-gel method at low temperatures and atmospheric pressure. In recent years, many endeavors have been made so as to enhance the efficiency of TiO2 photocatalytic activity. The studies show that the inclusion of SiO2 into the TiO2 can give rise to the photocatalytic activity relevant to the derived composite Nanoparticles with regard to the pure TiO2. In this study, the production of TiO2-SiO2 Nanocomposite layers was proceeded via the sol method and the effect of SiO2 increasing and its amount in the primary solution on the... 

    Improvement in TiO2 photocatalytic performance by ZrO2 nanocompositing and immobilizing

    , Article Desalination and Water Treatment ; Volume 57, Issue 58 , 2016 , Pages 28450-28459 ; 19443994 (ISSN) Koohestani, H ; Sadrnezhaad, S. K ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    In this work, the effect of addition of ZrO2 to TiO2 and catalyst geometry on photocatalytic properties of the nanocomposite TiO2/ZrO2 was investigated. The traditional use of powdery photocatalyst for the degradation of organic compounds has post-treatment problems which means much higher time and costs. A novel method to minimize these problems is immobilization by insertion onto an inert substrate. Several geometries of TiO2–10%ZrO2 (T-10Z) nano-photocatalysts (powder, fiber, film, and network-shaped) were produced using different templates. The products were characterized by X-ray diffraction, field emission scanning electron microscopy, Brunauer–Emmett–Teller, and diffuse reflectance... 

    In-situ formation and entrapment of Ag/AgCl photocatalyst inside cross-linked carboxymethyl cellulose beads: A novel photoactive hydrogel for visible-light-induced photocatalysis

    , Article Journal of Photochemistry and Photobiology A: Chemistry ; Volume 398 , 2020 Heidarpour, H ; Golizadeh, M ; Padervand, M ; Karimi, A ; Vossoughi, M ; Tavakoli, M. H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this work, a novel photoactive cellulose-based hydrogel was prepared by simultaneous AgCl formation and entrapment inside Al (III) and Fe (III) cross-linked carboxymethyl cellulose beads. Physio-chemical and optical properties of the synthesized composites were well characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, elemental mapping, Fourier transform infrared (FTIR) spectroscopy, photoluminescence (PL), and diffuse reflectance spectroscopy (DRS). The photocatalytic activity of hydrogels was evaluated by the degradation of rhodamine B (RhB), as a model environmental pollutant. A comparative study showed that... 

    Single-layer MoS2-MoO3-x heterojunction nanosheets with simultaneous photoluminescence and co-photocatalytic features

    , Article Catalysts ; Volume 11, Issue 12 , 2021 ; 20734344 (ISSN) Saadati, M ; Akhavan, O ; Fazli, H ; Sharif University of Technology
    MDPI  2021
    Abstract
    Single-layer MoS2-MoO3-x heterojunction nanosheets with visible-light-sensitive band gap energy and average lateral dimensions of ~70 nm were synthesized by using a two-step combined exfoliation method. The exfoliation was initiated from pristine MoS2, while some sulfur sites in expanded MoS2 sheets during exfoliating were substituted by ambient non-thermal oxygen, resulting in formation of α-MoO3-x crystalline domains. The morphological features, crystalline structure, phase formation, number of layers, and optical properties of the MoS2-MoO3-x nanosheets were determined by atomic force microscopy; X-ray diffraction; field emission electron microscopy; transmission electron microscopy; and... 

    Synergistic cobalt–nickel co-catalyst for enhanced visible light-induced photocatalytic water oxidation

    , Article Journal of Chemical Sciences ; Volume 132, Issue 1 , 2020 Nazari, P ; Nouri, O ; Rahman Setayesh, S ; Sharif University of Technology
    Springer  2020
    Abstract
    Abstract: The loading of co-catalyst is an efficient way to increase the activity of synthesized carbon-based photocatalysts in the energy and environmental applications. Herein, Co and Ni decorated on g-C3N4 was synthesized as a visible light active photocatalyst and characterized with XRD, FT-IR, BET, DRS, TGA, FE-SEM, EDX, and EIS techniques. From the characterization results, it was demonstrated that cobalt and nickel which were present in the structure of the nanocatalyst, were in the metallic form. The decoration of Ni and Co reduced bandgap energy of g-C3N4 and made the synthesized nanocomposite active under visible light. The operating condition of O2 photocatalytic generation was... 

    Selective photooxygenation of dihydroartemisinic acid in a reusable microreactor with physically immobilized photocatalysts

    , Article Materials Research Bulletin ; Volume 145 , 2022 ; 00255408 (ISSN) Tamtaji, M ; Kazemeini, M ; Tyagi, A ; Roxas, A. P ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Photocatalytic production of organic materials including Artemisinin has been hampered in the pharmaceutical industry because of low reusability and selectivity of photocatalysts. In this work, reusable photocatalysts were synthesized through novel physical and electrostatic immobilizations. After four reaction cycles of dihydroartemisinic acid (DHAA) photooxygenation using physically supported photosensitizers, the conversion was slightly reduced from 81 to 78%, indicating their high reusability. This occurred while maintaining the selectivity of the desired product above 85%, which was higher than that of the homogeneous photosensitizers. Then, a continuous-flow microreactor functionalized... 

    Photocatalytic Properties of Heat-treated Carbon Nitride to Reduce Cyanide Pollutant from Aqueous Solution

    , M.Sc. Thesis Sharif University of Technology Mahtabpour, Hossein (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    Cyanide ion is one of the materials used in various industries related to metallurgy, the release of which in the environment causes water, air and soil pollution. Numerous researchers have used different methods to remove this pollutant from the environment. Comparing these methods with each other, photocatalytic processes have attracted a lot of attention due to the use of sunlight as a sustainable energy source, good efficiency, low cost, etc. Therefore, in the present study, first the heat-treated graphite carbon-nitride photocatalyst was synthesized and then characterized by X-ray diffraction (XRD) tests, infrared spectroscopy (FT-IR), scattered reflectance spectroscopy (DRS),... 

    Photocatalytic Conversion of CO2 under Visible Light Irradiation

    , M.Sc. Thesis Sharif University of Technology Jamali Gandomani, Hossein (Author) ; Khorasheh, Farhad (Supervisor) ; Hamzehlouyan,Tayebeh (Supervisor) ; Larimi, Afsanehsadat (Supervisor)
    Abstract
    The photoreduction of CO2 to produce renewable solar fuel known as artificial photosynthesis attracted a lot of attention during the last two decades due to the global warming issue caused through increasing CO2 and shortage of fossil fuels resources. In this study, in order to enhance photocatalytic process of CO2 under visible light, TiO2-graphene and TiO2-copper nanocomposite utilized. A series of Cu/TiO2 photocatalysts were prepared with various Cu (2, 5 and 8 wt%) and a series of G/TiO2 photocatalysts with different graphene (G) content (5, 20 and 40 wt.%) were prepared and tested for the reduction of CO2. XRD, BET, DRS and TEM analyses employed to characterize the catalyst while the... 

    , M.Sc. Thesis Sharif University of Technology Fazlali, Masoume (Author) ; Moshfegh, Ali Reza (Supervisor) ; Akhavan, Omid (Supervisor)
    Abstract
    In photocatalitic activity of titana an effective approach to achieve high charge separation efficiency and high level of sensitivity under visible light is coupling it with another semiconductor with smaller band gap and appropriate banding energy structure. achieving all mentioned above, we used bilayer structure and coupled TiO2 with hematite which its small band gap(Eg ~ 2.1 ev) is sensitive to visible light. Bilayer systems of TiO2/Fe2O3 , Fe2O3/TiO2 were fabricated by sol-gel process and variable parameter was upper layer thickness. The layers were deposited on glass substrate via sol-gel process. The upper layers were prepared in different thicknesses in two ways. First, they... 

    Electrophoretic Deposition of TiO2 Self-Cleaning Coatings

    , M.Sc. Thesis Sharif University of Technology Horandghadim, Nazila (Author) ; Ghorbani, Mohammad (Supervisor) ; Dolati, Abolghasem (Supervisor)
    Abstract
    In this research, TiO2 nano-particles were electrophoretically deposited on the FTO glass to produce self-cleaning property. Two type of suspensions with different TiO2 nano-powders were used. Merck and fabricated by sol-gel route, TiO2 nano-powders were utilized in suspensions and Conductivity, pH and zeta potential of suspensions were determined. Electrophoretic deposition of two kind of suspensions was performed in different voltages of 10, 30 and 60V (for 10s) and room temperature. TiO2 coatings were sintered in 450oC for 1 hour. The phase transformation of TiO2 films were measured using XRD. Morphology, average particle size and thickness of TiO2 films were analyzed using FESEM... 

    Fabrication of Graphene-WO3 Nanocomposites as Photocatalyst in the Visible Light Region

    , M.Sc. Thesis Sharif University of Technology Choobtashani, Mohammad (Author) ; Akhavan, Omid (Supervisor)
    Abstract
    WO3 is known as a photocatalyst in the visible light region, but with lower efficiency compared to more interesting semiconductor photocatalysts such as TiO2 and ZnO. Many attempts have been done to increase the efficiency of this photocatalyst by incorporating metal and metal oxide nanoparticles or recently carbon nanotubes.On the other hand, application of graphene, as an unrolled carbon nanotube, for increasing the photocatalytic activity of TiO2 and ZnO has shown positive results. Furthermore, it was reported that such semiconductor photocatalysts (and very recently WO3) can photocatalytically reduce the chemically exfoliated graphene oxide sheets under UV-vis irradiation.
    In this... 

    An Investigation on Photocatalytic Behavior of N-doped and N-V-doped TiO2 Thin Film, Coated on Glass Surface by Sol-gel Dip Coating Method

    , M.Sc. Thesis Sharif University of Technology Khatibnezhad, Hediyeh (Author) ; Faghihi Sani, Mohammad Ali (Supervisor)
    Abstract
    In this study, the photocatalytic activity and hydrophilicity of coat improved using Nitrogen and Vanadium elements as dopant in TiO2 coating. By using vanadium and nitrogen elements and silica prelayer, a titania coating was deposited on the soda-lime glass substrate by sol-gel dip coating method to produce self-cleaning surface. XRD and FTIR analyses were done on the powders after heat treating at in 450˚C for 30 min. XPS analysis was done for investigation of N replacement in titania structure. The band-gap energy of formed anatase was derived using UV-Vis analysis. The coating morphology and thickness were also investigated by SEM. Hydrophilicity of coatings was determined by measuring...