Loading...
Search for: phase-composition
0.006 seconds

    Kinetics formation of bimetallic nanoalloys at different simulation times

    , Article Journal of Molecular Liquids ; Volume 240 , 2017 , Pages 468-475 ; 01677322 (ISSN) Akbarzadeh, H ; Taherkhani, F ; Mehrjouei, E ; Masoumi, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    MD simulations were used for investigation on the kinetic formation of Ni-Pd nanoalloys at different simulation times. We have examined excess energies and bond order parameters for initial gas phase compositions including pure Ni, and Pd, and also Ni0.2Pd0.8, Ni0.4Pd0.6, Ni0.6Pd0.4, Ni0.8Pd0.2 concentrations. Excess energies for created Ni-Pd nanoalloys exhibit more instabilities for larger nanoparticles. Also, bond order results demonstrate amorphous structures for all of created nanoclusters. Moreover, number of formed clusters for pure Ni at 5 ns is more than pure Pd nanoclusters and number of formed clusters decreases when Pd is doped in pure Ni nanocluster. © 2017 Elsevier B.V  

    Post-buckling analysis of piezo-magnetic nanobeams with geometrical imperfection and different piezoelectric contents

    , Article Microsystem Technologies ; Volume 25, Issue 9 , 2019 , Pages 3477-3488 ; 09467076 (ISSN) Mirjavadi, S. S ; Forsat, M ; Barati, M. R ; Abdella, G. M ; Hamouda, A. M. S ; Mohasel Afshari, B ; Rabby, S ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Thermal post-buckling behavior of a geometrically imperfect/perfect piezo-magnetic nano-scale beams made of two-phase composites is analyzed in the present paper based on nonlocal elasticity theory. For the first time, the material properties of the nanobeam are considered as functions of piezoelectric phase percentage. All previous investigations on piezo-magnetic nanobeams neglect the effect of geometrical imperfection which is very important since the nanobeams are not always ideal or perfect. The post-buckling problem of such nanobeams is solved by introducing an analytical approach to derive buckling temperatures. The present solution is simple and easily understandable. For both... 

    A new method in prediction of TCP phases formation in superalloys

    , Article Materials Science and Engineering A ; Volume 396, Issue 1-2 , 2005 , Pages 138-142 ; 09215093 (ISSN) Mousavi Anijdan, S. H ; Bahrami, A ; Sharif University of Technology
    2005
    Abstract
    The purpose of this investigation is to develop a model for prediction of topologically closed-packed (TCP) phases formation in superalloys. In this study, artificial neural networks (ANN), using several different network architectures, were used to investigate the complex relationships between TCP phases and chemical composition of superalloys. In order to develop an optimum ANN structure, more than 200 experimental data were used to train and test the neural network. The results of this investigation shows that a multilayer perceptron (MLP) form of the neural networks with one hidden layer and 10 nodes in the hidden layer has the lowest mean absolute error (MAE) and can be accurately used... 

    Finite anti-plane shear deformation of nonlinear elastic composites reinforced with elliptic fibers

    , Article Mechanics of Materials ; Volume 41, Issue 7 , 2009 , Pages 868-877 ; 01676636 (ISSN) Avazmohammadi, R ; Naghdabadi, R ; Weng, G. J ; Sharif University of Technology
    2009
    Abstract
    Exact solutions for nonlinear composites undergoing finite deformation are in general difficult to find. In this article, such a solution is obtained for a two-phase composite reinforced with elliptic fibers under anti-plane shear. The analysis is based on the theory of hyperelasticity with both phases characterized by incompressible neo-Hookean strain energies, and is carried out when the composite elliptic cylinder assemblage carries a confocal microgeometry. The problem for a class of compressible neo-Hookean materials is also studied. The analytical results for the stress and strain distributions are verified with finite element calculations where excellent agreement is found. We then... 

    Study plasma electrolytic oxidation process and characterization of coatings formed in an alumina nanoparticle suspension

    , Article Vacuum ; Vol. 108, issue , 2014 , p. 12-19 Sarbishei, S ; Faghihi Sani, M. A ; Mohammadi, M. R ; Sharif University of Technology
    Abstract
    Alumina-silicate composite coatings were formed on titanium substrate by plasma electrolytic oxidation (PEO) process using a silicate-based electrolyte containing alumina nanoparticles. Microstructure, chemical and phase compositions, and thickness of the coatings were investigated to determine, coating mechanism and probable reactions during the process. The effect of processing time on corrosion resistance of the coatings was investigated using the potentiodynamic polarization test. Barrier layer (TiO2) formation, micro arcs occurrence, and electrolyte ionization were the main stages of PEO coating growth process. Alumina nanoparticles were incorporated into the coating by cataphoretic and... 

    Numerical modeling and experimental validation of microstructure in gray cast iron

    , Article International Journal of Minerals, Metallurgy and Materials ; Volume 19, Issue 10 , 2012 , Pages 908-914 ; 16744799 (ISSN) Jabbari, M ; Davami, P ; Varahram, N ; Sharif University of Technology
    Springer  2012
    Abstract
    To predict the amount of different phases in gray cast iron by a finite difference model (FDM) on the basis of cooling rate (R), the volume fractions of total γphase, graphite, and cementite were calculated. The results of phase composition were evaluated to find a proper correlation with cooling rate. More trials were carried out to find a good correlation between the hardness and phase composition. New proposed formulas show that the hardness of gray cast iron decreases as the amount of graphite phase increases, and increases as the amount of cementite increases. These formulas are developed to correlate the phase volume fraction to hardness. The results are compared with experimental data... 

    The effect of dolomite type and Al2O3 content on the phase composition in aluminous cements containing spinel

    , Article Ceramics - Silikaty ; Volume 55, Issue 2 , 2011 , Pages 169-175 ; 08625468 (ISSN) Pouyamehr, M. R ; Nemati, Z. A ; Sani, M. A. F ; Naghizadeh, R ; Sharif University of Technology
    2011
    Abstract
    In this paper, the effect of dolomite type and Al2O3 content on the phase composition in aluminous cements containing MA spinel is investigated. For this reason, the raw and calcined dolomites are used as raw materials along with calcined alumina in the preparation of the cement. Then, different compositions are prepared at 1350 °C using the sintering method and their mineralogical compositions are investigated using the diffractometric technique. Also, their microstructures arre evaluated. The results indicate that raw materials used have great effect on the type and amount of formed phases in cement composition. Independently of the dolomite type used, a mixed phase product consisting of... 

    The improvement of electron transport rate of TiO2 dye-sensitized solar cells using mixed nanostructures with different phase compositions

    , Article Ceramics International ; Volume 39, Issue 7 , 2013 , Pages 7343-7353 ; 02728842 (ISSN) Bakhshayesh, A. M ; Mohammadi, M. R ; Sharif University of Technology
    2013
    Abstract
    Dye-sensitized solar cells (DSCCs) in the form of mixed nanostructures containing TiO2 nanoparticles and nanowires with different weight ratios and phase compositions are reported. X-ray diffraction and field emission scanning electron microscopy analyses revealed that the synthesized TiO 2 nanoparticles had average crystallite size in the range 21-39 nm, whereas TiO2 nanowires showed diameter in the range 20-50 nm. The indirect optical band gap energy of TiO2 nanowires, anatase- and rutile-TiO2 nanoparticles was calculated to be 3.35, 3.28 and 3.17 eV, respectively. The power conversion efficiency of the solar cells changed with nanowire to nanoparticle weight ratio, reaching a maximum at a... 

    Effect of carbon-based nanoparticles on the cure characteristics and network structure of styrene-butadiene rubber vulcanizate

    , Article Polymer International ; Volume 61, Issue 4 , 2012 , Pages 664-672 ; 09598103 (ISSN) Saatchi, M. M ; Shojaei, A ; Sharif University of Technology
    2012
    Abstract
    The network structure of styrene-butadiene rubber (SBR) in the presence of carbon black (CB) with two different structures and multi-walled carbon nanotubes (MWCNTs) was investigated. Swelling behaviour, tensile properties at various strain rates and cure kinetics were characterized. Experimental data were analysed using the Flory-Rehner model as well as the tube model theory. It is found that the network structure of CB-filled SBR follows a three-phase composite model including rigid particles, semi-rigid bound rubber and matrix rubber. This bound rubber is postulated to be critical for the mechanical and deformational properties, development of crosslinking density in matrix rubber and... 

    Effects of alumina nanoparticles concentration on microstructure and corrosion behavior of coatings formed on titanium substrate via PEO process

    , Article Ceramics International ; Volume 42, Issue 7 , May , 2016 , Pages 8789–8797 ; 02728842 (ISSN) Sarbishei, S ; Faghihi Sani, M. A ; Mohammadi, M. R ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Plasma electrolytic oxidation (PEO) process was employed to create ceramic coatings on titanium substrate by using silicate-based electrolytes containing different concentrations of alumina nanoparticles (0, 3, 6, and 10. g/lit). The effect of alumina nanoparticles concentration on the morphology, chemical and phase composition of the PEO coatings was investigated by scanning electron microscope, energy dispersive spectrometer, and X-ray diffractometer, respectively.The corrosion behavior of samples was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests. SEM, EDS, and XRD analyses illustrated that alumina nanoparticles incorporated into the... 

    Comparative study on effect of titania morphology for light harvesting and scattering of DSSCs: Mesoporous nanoparticles, microspheres, and dandelion-like particles

    , Article Environmental Progress and Sustainable Energy ; Volume 35, Issue 6 , 2016 , Pages 1818-1826 ; 19447442 (ISSN) Mozaffari, N ; Mohammadi, M. R ; Andaji Garmaroudi, Z ; Musvi Gharavi, P. S ; Sharif University of Technology
    John Wiley and Sons Inc 
    Abstract
    The light scattering and harvesting effects in dye-sensitized solar cells (DSSCs) is studied by controlling morphology, phase composition, and thickness of monolayer and double-layer TiO2 photoanode electrodes. The starting materials for preparation of TiO2 cells, including 25 nm mesoporous anatase nanoparticles, 200 nm anatase microspheres, 10 µm dandelion-like rutile particles and 40 nm nanoparticles containing 80% anatase-20% rutile, are synthesized by evaporation-induced self-assembly, sol-gel, and hydrothermal processes. It was found that the mesoporous anatase nanoparticles may improve light harvesting and dye-sensitization due to their high surface area and small particle size,... 

    Double-layer dye-sensitized solar cells based on Zn-doped TiO2 transparent and light scattering layers: Improving electron injection and light scattering effect

    , Article Solar Energy ; Vol. 103 , May , 2014 , pp. 210-222 ; ISSN: 0038092X Ghanbari Niaki, A. H ; Bakhshayesh, A. M ; Mohammadi, M. R ; Sharif University of Technology
    Abstract
    A new strategy for enhancing the efficiency of TiO2 dye-sensitized solar cells (DSSCs) by design of a new double-layer film doped with Zn ions, with various morphologies and phase compositions, is reported. X-ray photoelectron spectroscopy (XPS) revealed that Zn2+ (in the range 0.25-0.1 at.%) was successfully incorporated into the TiO2 lattice without forming secondary phases. X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM) analyses showed that the synthesized nanoparticles had nanometer grains with different phase compositions and average crystallite sizes in the range of 8-48 nm, depending upon Zn atomic percentage. UV-vis absorption verified that Zn... 

    Formation mechanism of bead-chain-like ZnO nanostructures from oriented attachment of Zn/ZnO nanocomposites prepared via DC arc discharge in liquid

    , Article Materials Science in Semiconductor Processing ; Volume 72 , 2017 , Pages 128-133 ; 13698001 (ISSN) Ziashahabi, A ; Poursalehi, R ; Naseri, N ; Sharif University of Technology
    Abstract
    Bead-chain-like ZnO nanoparticles (NPs) formed in colloidal solution from oriented attachment (OA) of spherical nanoparticles. Arc discharge in liquid is a cost-effective method for quick mass production of nanostructured materials without considerable environmental footprints. Applying voltage across two zinc rods as electrodes, which were immersed in water cause explosion of electrodes and plasma generation. Zn/ZnO nanocomposites produced by interaction of different active species in high-pressure and high-temperature plasma at the solid-liquid interface. Different sized nanoparticles with diameters of 26, 35, 40 and 60 nm at applied discharge currents of 150, 100, 50 and 20 A... 

    Synthesis and characterisation of nanostructured neodymium titanium oxides by sol-gel process: Controlling the phase composition, crystal structure and grain size

    , Article Materials Chemistry and Physics ; Volume 122, Issue 2-3 , 2010 , Pages 512-523 ; 02540584 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2010
    Abstract
    Nanocrystalline neodymium titanium oxide thin films and powders with different phase compositions with mesoporous structure were produced by a straightforward particulate sol-gel route. The sols were prepared in various Nd:Ti molar ratios and they showed a narrow particle size distribution in the range 20-26 nm. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the powders contained mixtures of Nd4Ti9O24, Nd2Ti4O11, Nd3Ti4O12 for titanium dominant powders (Nd:Ti ≤ 45:60), mixtures of Nd2TiO5 and Nd2O3 for neodymium dominant powders (Nd:Ti ≥ 75:25) and pure Nd3Ti4O12 phase for equal molar ratio of Nd:Ti, depending on the annealing temperature and Nd:Ti...