Loading...
Search for: parallel-plates
0.006 seconds
Total 23 records

    THz plasmonic devices based on an array of metallic posts in a parallel-plate waveguide

    , Article International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, Mainz ; 2013 ; 21622027 (ISSN) ; 9781467347174 (ISBN) Ahmadi Boroujeni, M ; Shahabadi, M ; Altmann, K ; Sharif University of Technology
    2013
    Abstract
    An array of metallic posts sandwiched between two parallel metal plates supports highly-confined surface waves that can be regarded as spoof surface plasmons. This structure which is called the parallel-plate ladder waveguide (PPLWG) can be used for implementing THz guided-wave devices. In this paper, the effect of post shapes on waveguiding characteristics of PPLWG is analyzed and realization of certain devices such as couplers using the proposed structure is investigated  

    Parallel-plates-based dirac leaky wave antennas

    , Article IET Microwaves, Antennas and Propagation ; Volume 15, Issue 15 , 2021 , Pages 1877-1890 ; 17518725 (ISSN) Rezaee, S ; Memarian, M ; Ahmadian, M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    In this work, the authors experimentally show Dirac Leaky Wave Antennas (DLWAs) at upper microwave frequencies. For the first time, DLWAs are implemented using simple Parallel plate waveguide (PPW) technology, while yielding desirable radiation features and continuous beam scanning through broadside, as well as extremely low profile, with significant ease of fabrication, making them well suited for Ku band applications such as satellite communication, radar and emerging fifth-generation (5G). A planar Dirac photonic crystal in PPW is shown with a closed bandgap and linear dispersion around broadside. In this work, 1D and 2D PPDLWAs are designed that provide scannable fan and pencil beams,... 

    Numerical Modeling of Linear and Nonlinear Flow in Saturated Fractured Porous Media

    , M.Sc. Thesis Sharif University of Technology Nayer, Reza (Author) ; Pak, Ali (Supervisor)
    Abstract
    Study of fluid flow through the porous fractured media is used in many branches of science such as oil production, environment, water resources, geotechnics and mining, and the results of these researches are useful for industries.The porous fractured media consist of two main parts each having different roles. The first is the fracture networks that act as channels to conduct the fluid in the media, and the second is the porous media that act as a storage space for the fluid. The differences of dimensions and ability of fluid conduction between these two parts would cause the flow analysis to be performed in a heterogeneous and non-isotropic media. Moreover, the irregular networks of... 

    Analysis of Inhomogeneous Parallel-Plate Ladder Waveguide for Terahertz Applications

    , M.Sc. Thesis Sharif University of Technology Mohseny Tonekabony, Navid (Author) ; Ahmadi Boroujeni, Mahdi (Supervisor)
    Abstract
    In this thesis a waveguiding structure is introduced and analyzed for terahertz applications. The proposed structure is called Inhomogeneous Parallel-Plate Ladder Waveguide (IPPLWG). This waveguide is formed by locating a periodic structure inside parallel-plate waveguide.This periodic structure itself consists of a array of metallic posts surrounded by silicon. The combination of metallic posts and silicon have the capability of guiding and confining of EM waves in terahertz band. IPPLWG can be used in implementing the passive terahertz devices such as filters and couplers. The main objective in this thesis is to characterize the IPPLWG for potential applications. Because IPPLWG has open... 

    MHD flow in a channel using new combination of order of magnitude technique and HPM [MHD tok u kanalu uporabom novih kombinacija tehnika grubog opisa vrijednosti i HPM]

    , Article Tehnicki Vjesnik ; Volume 21, Issue 2 , April , 2014 , Pages 317-321 ; ISSN: 13303651 Abbasi, M ; Ganji, D. D ; Rahni, M. T ; Sharif University of Technology
    Abstract
    The present work is concerned with the steady incompressible flow through a parallel plate channel with stretching walls under an externally applied magnetic field. The governing continuity and Navier-Stokes equations are reduced to a fourth order nonlinear differential equation by using vorticity definition and similarity solution transformation. The obtained equations are solved by applying the analytical homotopy perturbation method (HPM). The method is called order of magnitude suggested for simplifying series solution to finite expression that is useful in engineering problems. The results are verified by comparing with numerical solutions and demonstrate a good accuracy of the obtained... 

    Semi-conducting carbon nanotube as variable capacitor

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 54 , 2013 , Pages 9-14 ; 13869477 (ISSN) Ozmaian, M ; Naghdabadi, R ; Sharif University of Technology
    2013
    Abstract
    This paper proposes a novel, one-part, variable capacitor, using semi-conducting carbon nanotube (CNT). This variable capacitor works based on the change in the electronic structure of CNTs under applied voltage and deformations. Positive and negative charges are stored at both ends of a non-zero band gap nanotube which works as metallic electrodes in parallel plate capacitors. Also the neutral strip in the middle acts as the dielectric part of a conventional capacitor under the influence of an external electric field. Mechanical strains on carbon nanotube change its band gap energy and thus the length of neutral strip and charged regions. The lengths of these parts are primarily dependent... 

    Graetz problem extended to mixed electroosmotically and pressure-driven flow

    , Article Journal of Thermophysics and Heat Transfer ; Volume 26, Issue 1 , 2012 , Pages 123-133 ; 08878722 (ISSN) Sadeghi, A ; Veisi, H ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    2012
    Abstract
    Thermally developing mixed electroosmotically and pressure-driven flow in a parallel plate microchannel with a step change in wall temperature is considered in the framework of an extended Graetz problem. Both Joule heating and viscous dissipation effects are taken into consideration. Expressions for the dimensionless temperature and Nusselt number in the form of infinite series are presented. In general, the associated eigenvalue problem is solved numerically. Nevertheless, an analytical solution is also presented for axial locations close to the entrance. Comparisons are made between the present results and those obtained by approximating the electroosmotic velocity with the... 

    Transmission line model for one-dimensional metallic grating in TE polarization

    , Article 2010 International Conference on Photonics, ICP2010, 5 July 2010 through 7 July 2010 ; July , 2010 ; 9781424471874 (ISBN) Khavasi, A ; Mehrany, K ; Sharif University of Technology
    2010
    Abstract
    A simple transmission line model is presented to emulate field behavior in a one dimensional metallic grating in TE polarization. The proposed model is based on the fact that pairs of adjacent metallic strips in the structure act as a parallel plate waveguide supporting TE guided modes for low enough frequencies. The effect of fringing fields is also included and a very good approximate model is obtained to simulate metallic gratings in TE polarization  

    Parallel-plate waveguide integrated filters and lenses realized by metallic posts for terahertz applications

    , Article International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, 25 September 2016 through 30 September 2016 ; Volume 2016-November , 2016 ; 21622027 (ISSN) ; 9781467384858 (ISBN) Ahmadi Boroujeni, M ; Sharif University of Technology
    IEEE Computer Society  2016
    Abstract
    In this paper, we report on the design and analysis of filters and lenses realized by an array of metallic posts integrated in a parallel-plate waveguide (PPWG). The design methodology of these components is inferred from the modal analysis of a spoof surface plasmonic waveguide composed of metallic posts arranged in a 1D periodic structure inside PPWG. Samples of the proposed devices are analyzed using a full-wave analysis method and their performance is assessed. We show that the mentioned structure can be used to realize all-metallic band-pass filters and lenses for mm-wave and terahertz applications  

    Drag reduction in a channel with microstructure grooves using the lattice Boltzmann method

    , Article Journal of Physics D: Applied Physics ; Volume 50, Issue 10 , 2017 ; 00223727 (ISSN) Daeian, M. A ; Moosavi, A ; Nouri Borujerdi, A ; Taghvaei, E ; Sharif University of Technology
    Institute of Physics Publishing  2017
    Abstract
    Using the Shan-Chen lattice Boltzmann multi-phase model, we investigate the effect of adding microstructured grooves to the walls of a 2D parallel-plate channel on the pressure drop in the channel. The effects of the size of the grooves on the pressure drop in the channel were considered. It was observed that the pitch of the grooves has a considerable effect on the pressure drop in the channel, and even for some values of the pitch we observe an increase in the pressure drop. As the pitch decreases, a lower pressure drop is achieved. The results also show that as the ratio of the solid-liquid contact surface to the whole surface is decreased, the pressure drop decreases. It is also observed... 

    The Gaussian expansion of the Green's function of an electric current in a parallel-plate waveguide

    , Article 2008 IEEE International RF and Microwave Conference, RFM 2008, Kuala Lumpur, 2 December 2008 through 4 December 2008 ; April , 2008 , Pages 46-48 ; 9781424428663 (ISBN) Tajdini, M. M ; Shishegar, A. A ; Sharif University of Technology
    2008
    Abstract
    In this paper, a novel closed form expression is derived to find the Green's function of a horizontal electric current in a parallel-plate waveguide. It is achieved by expanding the Green's function into a series of Gaussian functions. This new method is called the Gaussian Green's function (GGF) method. The main advantage of the GGF method lies in its precision as well as rapid convergence. Numerical results confirm that the closed form expression yields less than 0.2% error compared to the numerical integration of the spectral integral. Furthermore, it is verified that this method can be in excellent agreement with the complex images (CI) method. © 2008 IEEE  

    Phase shift calibration based on Fresnel diffraction from phase plates

    , Article Journal of Optics (United Kingdom) ; Volume 14, Issue 12 , 2012 ; 20408978 (ISSN) Aalipour, R ; Aminjafari, M ; Sharif University of Technology
    2012
    Abstract
    When a transparent plane-parallel plate is illuminated at a boundary region by a parallel monochromatic beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The intensity of the diffraction fringes varies periodically with changes in the optical path difference of the light passing through the plate edge. The optical path difference depends on the incident angle of the light, the refractive index of the plate and surrounding medium, and the wavelength of the light. Plotting the intensity of the diffraction fringes versus optical path difference provides a general phase shift method for phase... 

    A distributed circuit model for side-coupled nanoplasmonic structures with metal-insulator-metal arrangement

    , Article IEEE Journal on Selected Topics in Quantum Electronics ; Volume 18, Issue 6 , March , 2012 , Pages 1692-1699 ; 1077260X (ISSN) Rezaei, M ; Jalaly, S ; Miri, M ; Khavasi, A ; Fard, A. P ; Mehrany, K ; Rashidian, B ; Sharif University of Technology
    IEEE  2012
    Abstract
    A transmission line model is developed for coupled plasmonic metal-insulator-metal (MIM) waveguides. In the proposed model coupling between electric fields of two plasmonic waveguides is modeled by distributed mutual capacitor while distributed mutual inductor accounts for magnetic field coupling. These mutual elements are determined using propagation constants of supermodes of coupled waveguides. The model is applied to analyze coupled line directional coupler and side-coupled rectangular resonators. The effectiveness of the model is assessed using fully numerical finite-difference time-domain (FDTD) technique. The results have excellent agreement with the numerical methods  

    Transient behavior of fluid flow and heat transfer in vertical channels partially filled with porous medium: Effects of inertial term and viscous dissipation

    , Article Energy Conversion and Management ; Volume 61 , September , 2012 , Pages 1-7 ; 01968904 (ISSN) Hajipour, M ; Molaei Dehkordi, A ; Sharif University of Technology
    Elsevier  2012
    Abstract
    In this article, transient hydrodynamic and heat-transfer behavior of Newtonian fluid flow in vertical parallel-plate channels partially filled with a porous medium has been investigated numerically. In this regard, the influences of macroscopic local inertial term and the viscous heating due to the viscous dissipation were taken into account in the momentum equations of porous region and the thermal energy equations, respectively. Moreover, Forchheimer-Brinkman extended Darcy model was used to model fluid flow in the porous region. In addition, an analytical solution was obtained in the case of negligible Brinkman and Forchheimer number values at the steady-state conditions. The predicted... 

    Hydrodynamic and thermal characteristics of combined electroosmotic and pressure driven flow in a microannulus

    , Article Journal of Heat Transfer ; Volume 134, Issue 10 , 2012 ; 00221481 (ISSN) Yavari, H ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    ASME  2012
    Abstract
    The present study considers both the hydrodynamic and thermal characteristics of combined electroosmotic and pressure driven flow in a microannulus. Analytical solutions are presented using the Debye-Hückel linearization along with the uniform Joule heating and negligible viscous dissipation assumptions, whereas exact results are achieved numerically. Here, the range of validity for the Debye-Hückel linearization is found to be about two times of that for a parallel plate microchannel. Accordingly, this linearization may successfully be used to evaluate the potential and velocity distributions up to the zeta potentials of 100 mV, provided that the dimensionless Debye-Hückel parameter is... 

    Analysis of nanofluid heat transfer in parallel-plate vertical channels partially filled with porous medium

    , Article International Journal of Thermal Sciences ; Volume 55 , 2012 , Pages 103-113 ; 12900729 (ISSN) Hajipour, M ; Molaei Dehkordi, A ; Sharif University of Technology
    Abstract
    In this article, mixed-convective heat transfer of nanofluids in a vertical channel partially filled with highly porous medium was studied. In the porous region, the Brinkman-Forchheimer extended Darcy model was used to describe the fluid flow pattern. Different viscous dissipation models were also applied to account for viscous heating. At the porous medium-fluid interface, interfacial coupling conditions for the fluid velocity and temperature were used to derive the analytical solution using a two-parameter perturbation method. The model used for the nanofluids incorporates the effects of Brownian motion and thermophoresis. With constant wall temperature, velocity and temperature profiles... 

    Simulation of red blood cell motion in microvessels using modified moving particle semi-implicit method

    , Article Scientia Iranica ; Volume 19, Issue 1 , 2012 , Pages 113-118 ; 10263098 (ISSN) Ahmadian, M. T ; Firoozbakhsh, K ; Hasanian, M ; Sharif University of Technology
    Abstract
    Red Blood Cells (RBCs) are the main cells in human blood, with a main role in the mechanical properties of blood as a fluid. Several methods have been improved to simulate the mechanical behavior of RBC in micro-capillaries. Since, in microscopic scales, using discrete models is more preferred than continuum methods, the Moving Particle Semi-Implicit method (MPS), which is a recent innovative particle based method, can simulate micro-fluidic flows based on NavierStokes equations. Although, by recent developments, the MPS method has turned into a considerable tool for modeling blood flow in micro meter dimensions, some problems, such as a commitment to use small time step sizes, still... 

    Viscous dissipation effects on thermal transport characteristics of combined pressure and electroosmotically driven flow in microchannels

    , Article International Journal of Heat and Mass Transfer ; Volume 53, Issue 19-20 , 2010 , Pages 3782-3791 ; 00179310 (ISSN) Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    This study investigates the influence of viscous dissipation on thermal transport characteristics of the fully developed combined pressure and electroosmotically driven flow in parallel plate microchannels subject to uniform wall heat flux. Closed form expressions are obtained for the transverse distributions of electrical potential, velocity and temperature and also for Nusselt number. From the results it is realized that the Brinkman number has a significant effect on Nusselt number. Generally speaking, to increase Brinkman number is to decrease Nusselt number. Although the magnitude of Joule heating can affect Brinkman number dependency of Nusselt number, however the general trend remains... 

    Viscous dissipation and rarefaction effects on laminar forced convection in microchannels

    , Article Journal of Heat Transfer ; Volume 132, Issue 7 , 2010 , Pages 1-12 ; 00221481 (ISSN) Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    2010
    Abstract
    Fluid flow in microchannels has some characteristics, which one of them is rarefaction effect related with gas flow. In the present work, hydrodynamically and thermally fully developed laminar forced convection heat transfer of a rarefied gas flow in two microgeometries is studied, namely, microannulus and parallel plate microchannel. The rarefaction effects are taken into consideration using first-order slip velocity and temperature jump boundary conditions. Viscous heating is also included for either the wall heating or the wall cooling case. Closed form expressions are obtained for dimensionless temperature distribution and Nusselt number. The results demonstrate that for both geometries,... 

    Thermally developing electroosmotic flow of power-law fluids in a parallel plate microchannel

    , Article International Journal of Thermal Sciences ; Volume 61 , 2012 , Pages 106-117 ; 12900729 (ISSN) Sadeghi, A ; Saidi, M.H ; Veisi, H ; Fattahi, M ; Sharif University of Technology
    2012
    Abstract
    The present investigation considers the thermally developing electroosmotic flow of power-law fluids through a parallel plate microchannel. Both the viscous dissipation and Joule heating effects are taken into account and a step change in wall temperature is considered to represent physically conceivable thermal entrance conditions. Expressions for the dimensionless temperature and Nusselt number in the form of infinite series are presented. In general, the resultant eigenvalue problem is solved numerically; nevertheless, an analytical solution is presented for the regions close to the entrance. A parametric study reveals that increasing amounts of the Peclet number result in higher wall...