Loading...
Search for: oscillating-flow
0.01 seconds
Total 40 records

    Low-cost reciprocating electromagnetic-based micropump for high-flow rate applications

    , Article Journal of Micro/ Nanolithography, MEMS, and MOEMS ; Volume 14, Issue 3 , July , 2015 ; 19325150 (ISSN) Sima, A. H ; Salari, A ; Shafii, M. B ; Sharif University of Technology
    SPIE  2015
    Abstract
    A reciprocating single-chamber micropump is designed and experimentally tested. The actuation technique of the pump is based on Lorentz force acting on an array of low-weight microwires placed on a flexible membrane surface. A square-wave electric current (5.6 and 7.8 A) with a low-frequency range (5.6 to 7.6 Hz) is applied through the microwires in the presence of a perpendicular magnetic field (0.08 to 0.09 T). The resultant oscillating Lorentz force causes the membrane to oscillate with the same frequency, and pushes the fluid to flow toward the outlet using a high-efficiency ball-valve. The micropump has exhibited a maximum efficiency of 2.03% with a flow rate as high as 490 μl/s and... 

    Effect of actuation frequency on the performance of diffuser micropumps

    , Article 4th International Conference on Nanochannels, Microchannels and Minichannels, ICNMM2006, Limerick, 19 June 2006 through 21 June 2006 ; Volume 2006 B , 2006 , Pages 725-731 ; 0791847608 (ISBN); 9780791847602 (ISBN) Mehrabian, A ; Ahmadian, M. T ; Sharif University of Technology
    2006
    Abstract
    Valveless piezoelectric micropumps are in wide practical use due to their ability to conduct particles with absence of interior moving mechanical parts. The objective of this paper is to obtain the fluid flow response to actuation frequency of a passive diffuser valve under harmonic pressures. In this regards a 2D model of a micropump valves and chambers is analyzed. The analysis is performed for 10Kpa back pressure on micropump chamber and actuation frequencies within the range of 1 Hz to 10 KHz. Results show the highest velocity in the direction of diffuser axis occurs at the narrow diffuser neck while flow direction reverses every half period. For low frequencies, a parabolic velocity... 

    Numerical Simulation and Analytical Modeling of Pulse Tube Refrigerators

    , Ph.D. Dissertation Sharif University of Technology Jafarian Dehkordi, Ali (Author) ; Saeedi, Mohammad Hassan (Supervisor) ; Kazemzade Hannani, Siamak (Supervisor)
    Abstract
    First and second law analyses of the pulse tube refrigerator cycle are performed in the present thesis. In this respect, mass, momentum and energy balance equations are employed to derive the system of governing equations. Three models have been resulted depending on the employed theoretical model to analyze the pulse tube and thermal regenerator sections. In the first model, the tube section governing equations have been descritised and finite volume technique has been employed to solve the equations. In the regenerator a linear trend was assumed for the pressure and temperature to complete the solution procedure. To improve the regenerator model, harmonic approximation technique has been... 

    Non-equilibrium model of three-phase flow in porous media in presence of capillary and gravity forces

    , Article Journal of Hydrology ; Vol. 478, issue , November , 2013 , p. 119-131 ; ISSN: 00221694 Jahanbakhshi, S ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    Abstract
    In this work a generalized non-equilibrium model of three-phase flow in porous media including gravity as well as capillary terms is developed and used for analysis of Riemann's problem in several three-phase systems. The proposed model uses the extension of Barenblatt model to three-phase systems considering dynamic effects in both relative permeability and capillary pressure functions. We compare the solution of the Riemann's problem when non-equilibrium effects are included. While equilibrium formulation develops unstable oscillatory solution in the elliptic region, non-equilibrium solution is smooth and stable. The results of this work might be helpful to better understanding the... 

    Non-equilibrium model of three-phase flow in porous media in presence of capillary and gravity forces

    , Article Journal of Hydrology ; Volume 478 , 2013 , Pages 119-131 ; 00221694 (ISSN) Jahanbakhshi, S ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    2013
    Abstract
    In this work a generalized non-equilibrium model of three-phase flow in porous media including gravity as well as capillary terms is developed and used for analysis of Riemann's problem in several three-phase systems. The proposed model uses the extension of Barenblatt model to three-phase systems considering dynamic effects in both relative permeability and capillary pressure functions. We compare the solution of the Riemann's problem when non-equilibrium effects are included. While equilibrium formulation develops unstable oscillatory solution in the elliptic region, non-equilibrium solution is smooth and stable. The results of this work might be helpful to better understanding the... 

    Interaction of two oscillating sonoluminescence bubbles in sulfuric acid

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 82, Issue 1 , 2010 ; 15393755 (ISSN) Sadighi Bonabi, R ; Rezaee, N ; Ebrahimi, H ; Mirheydari, M ; Sharif University of Technology
    2010
    Abstract
    The mutual interaction of two oscillating gas bubbles in different concentrations of sulfuric acid is numerically investigated. A nonlinear oscillation for spherical symmetric bubbles with equilibrium radii smaller than 10 μm at a frequency of 37 kHz in a strong driving acoustical field Pa =1.8 bar is assumed. The calculations are based on the investigation of the secondary Bjerknes force with regard to adiabatic model for the bubble interior which appears as repulsion or attraction interaction force. In this work the influence of the various concentrations of sulfuric acid in uncoupled and coupled distances between bubbles has been investigated. It is found that the sign and value of the... 

    Numerical Investigation of Jet Pump Performance in Traveling Wave Thermoacoustic Engine

    , M.Sc. Thesis Sharif University of Technology Barzegari, Ali (Author) ; Ghorbanian, Kaveh (Supervisor)
    Abstract
    Thermoacoustic engines are a promising alternative to the conventional heat engines due to the absence of moving parts in the hot region and the small temperature difference required for operation. However, the traveling wave thermoacoustic engine configuration has a relatively lower efficiency due to a phenomenon called Gedeon streaming. In this regard, a jet pump might be used to lower the negative effects of Gedeon streaming. The jet pump, which is simply an element consisting of one or more tapered holes, induces an oscillating flow through the asymmetric device and hence resulting in a time-averaged pressure drop across it. As a result, by balancing this time averaged pressure drop with... 

    Modeling and Predictive Control of Vinyl Acetate Polymerization in Semi-batch Reactor

    , M.Sc. Thesis Sharif University of Technology Najafi, Maysam (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    Obtaining polymers with desired properties is very important from industrial point of view. Weight average molecular weight and polydispersity are two important polymer properties. It is also important to obtain a high monomer conversion. In this thesis production of polyvinyl acetate is considered. Under special conditions, the vinyl acetate reactor dynamics become oscillatory which makes the reactor control difficult. For obtaining polymer with desired properties, an objective function which includes weight average molecular weight, polydispersity and monomer conversion has been defined. Then by minimizing this objective function the optimal temperature trajectory is obtained. In this... 

    Modeling and Investigation of Complexities Induced by Constant Volume Combustion Frequencies in a Gas Turbine Engine

    , M.Sc. Thesis Sharif University of Technology Gheydi, Maryam (Author) ; Ghorbanian, Kaveh (Supervisor)
    Abstract
    The objective of this research is to investigate the basic design challenges of a first stage turbine nozzle in a constant volume combustion (CVC) gas turbine engine. In general, CVC cycles have higher thermal efficiency and specific power despite their unstable combustion phenomenon which is due to moving as well as oscillating shock waves with a specific frequency and amplitude and resulting in a challenge to the engine designer. In this thesis, first, the performance parameters of CPC and CVC cycles are introduced and compared. Further, a model is developed to examine the flow non-uniformity, entropy generation, cycle thermal efficiency, and specific fuel consumption of a flow through the... 

    The unsteady behavior of subsonic wind tunnel wall pressure during pitching motion of the model

    , Article Scientia Iranica ; Vol.21, issue.1 , 2014 , p. 192-202 ; 10263098 Davari, A. R ; Soltani, M. R ; Ghaeminasab, M ; Sharif University of Technology
    Abstract
    Extensive low speed wind tunnel experiments have been undertaken to measure the test section, oor wall pressure distribution, in the presence of a 2D wing inside the test section. The experiments were performed for both the static and dynamic pitching motion of the model under difierent conditions. In these measurements, the efiects of the existence and oscillations of a 2D wing on the oor wall pressure at various locations were studied. According to the results, as the oscillation parameters, such as mean angle of attack and frequency, change, wall pressures at the points located in the front part of the test section, in the upstream region, exhibit difierent behavior from those in the... 

    Investigation of a mutual interaction force at different pressure amplitudes in sulfuric acid

    , Article Chinese Physics B ; Volume 20, Issue 8 , 2011 ; 16741056 (ISSN) Rezaee, N ; Sadighi Bonabi, R ; Mirheydari, M ; Ebrahimi, H ; Sharif University of Technology
    2011
    Abstract
    This paper investigates the secondary Bjerknes force for two oscillating bubbles in various pressure amplitudes in a concentration of 95% sulfuric acid. The equilibrium radii of the bubbles are assumed to be smaller than 10 μm at a frequency of 37 kHz in various strong driving acoustical fields around 2.0 bars (1 bar=10 5 Pa). The secondary Bjerknes force is investigated in uncoupled and coupled states between the bubbles, with regard to the quasi-adiabatic model for the bubble interior. It finds that the value of the secondary Bjerknes force depends on the driven pressure of sulfuric acid and its amount would be increased by liquid pressure amplitude enhancement. The results show that the... 

    Buzz cycle description in an axisymmetric mixed-compression air intake

    , Article AIAA Journal ; Volume 54, Issue 3 , 2016 , Pages 1036-1049 ; 00011452 (ISSN) Soltani, M. R ; Sepahi Younsi, J ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2016
    Abstract
    Buzz phenomenon is shock oscillation ahead of the supersonic air intake when its mass flow rate is decreasing at offdesign condition. The buzz onset and the buzz cycle of an axisymmetric mixed-compression supersonic intake have been experimentally investigated through pressure recording and shadowgraph flow visualization. The intake was designed for a freestream Mach number of 2.0; however, tests were conducted for M∞ = 1.8, 2.0, and 2.2. All tests were performed at 0 deg angle of attack. Results show that there is a strong relation between the acoustic characteristics of the intake and the buzz fluctuations. This relation causes a new pattern for the buzz oscillations, large-amplitude... 

    Numerical study of flow-induced oscillations of two rigid plates elastically hinged at the two ends of a stationary plate in a cross-flow

    , Article Journal of Fluids and Structures ; Volume 66 , 2016 , Pages 147-169 ; 08899746 (ISSN) Darbandi, M ; Fouladi, N ; Sharif University of Technology
    Academic Press  2016
    Abstract
    The flow-induced oscillation (FIO) of bluff bodies is commonly encountered in the fluid structure interaction (FSI) problems. In this study, we use an unstructured moving grid strategy and simulate the FIO of two rigid plates, which are elastically hinged at the two ends of a fixed flat plate in a cross-flow. We use a hybrid finite-element-volume (FEV) method in an arbitrary Lagrangian–Eulerian (ALE) framework to study FIO of the two hinged plates. The current simulations are carried out for wide ranges of flow Reynolds number (50–175), spring stiffness coefficient, and the two hinged plates’ moment of inertia magnitudes. The influences of these parameters are investigated on the magnitudes... 

    Interaction of two spark-generated bubbles near a confined free surface

    , Article Theoretical and Computational Fluid Dynamics ; Volume 30, Issue 3 , 2016 , Pages 185-209 ; 09354964 (ISSN) Saleki Haselghoubi, N ; Shervani Tabar, M. T ; Taeibi Rahni, M ; Dadvand, A ; Sharif University of Technology
    Springer New York LLC 
    Abstract
    In this paper, the oscillation of two spark-generated bubbles placed on a vertical column in close proximity to a confined free surface is considered. The confined free surface is accorded by the top opening of different configurations. These configurations include (i) a centrally perforated horizontal flat plate (θ = 90∘), (ii) vertically placed cylinder (θ = 0∘) and (iii) nozzle (θ > 0∘). The main objective of the present work is to study the effects of key parameters such as the nozzle geometry, the locations of the energy input (i.e., initial position of the bubbles with respect to each other and relative to the free surface) on the dynamics of the two bubbles and the free surface. It... 

    Effect of wind tunnel wall porosity on the flow around an oscillating airfoil at transonic speeds

    , Article Scientia Iranica ; Volume 24, Issue 3 , 2017 , Pages 1069-1076 ; 10263098 (ISSN) Golestani, A ; Soltani, M. R ; Masdari, M ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    The effect of porosity in oscillating situations (to the authors' knowledge, for the first time) on a supercritical airfoil (SC0410) has been experimentally investigated. Tests have been carried out in an open circuit suction-type wind tunnel at a free stream Mach number of M = 0:80. Both static and dynamic (pitching) tests have been carried out on the mentioned airfoil. The oscillation frequency for the unsteady tests has been set to 3 and 6 Hz. The amplitude of frequency is ±1 deg. The effect of porosity has been surveyed on the magnitude of pressure fluctuations, phase shift, and lift coefficient loop. The investigations show that increasing porosity in the test section of transonic... 

    Study of buzz phenomenon using visualization of external shock structure

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; 2018 ; 09544100 (ISSN) Farahani, M ; Jaberi, A ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    An experimental study was carried out on an axisymmetric supersonic inlet with external compression in order to investigate the buzz phenomenon at different angles of attack and mass flow rates. The model was equipped with accurate and high-frequency pressure sensors, and the tests were conducted at Mach numbers varying from 1.8 to 2.5, for various angles of attack. Shadowgraph visualization technique, together with a high-speed camera, was used to provide the visual description of the shock structure in front of the inlet and to study the characteristics of buzz. Furthermore, pressure distribution over the spike surface was measured using several pressure sensors. Frequency of the buzz and... 

    Supersonic inlet buzz detection using pressure measurement on wind tunnel wall

    , Article Aerospace Science and Technology ; Volume 86 , 2019 , Pages 782-793 ; 12709638 (ISSN) Farahani, M ; Daliri, A ; Sepahi Younsi, J ; Sharif University of Technology
    Elsevier Masson SAS  2019
    Abstract
    Feasibility of an innovative buzz detection technique through measuring the static pressure outside a mixed-compression supersonic inlet is studied. The buzz is an instability phenomenon that occurs almost in all supersonic inlets. During the buzz, shock oscillation along with pressure and mass flow fluctuations affects the performance characteristics of the inlet. The main objective of this paper is to introduce a simple and easy-to-implement method for investigation of the buzz phenomenon in a supersonic inlet. The experimental data for far field-based are compared with those of the model-based one at free stream Mach numbers of 1.8, 2.0, and 2.2 and at zero degrees angle of attack for a... 

    Study of buzz phenomenon using visualization of external shock structure

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 233, Issue 7 , 2019 , Pages 2690-2698 ; 09544100 (ISSN) Farahani, M ; Jaberi, A ; Sharif University of Technology
    SAGE Publications Ltd  2019
    Abstract
    An experimental study was carried out on an axisymmetric supersonic inlet with external compression in order to investigate the buzz phenomenon at different angles of attack and mass flow rates. The model was equipped with accurate and high-frequency pressure sensors, and the tests were conducted at Mach numbers varying from 1.8 to 2.5, for various angles of attack. Shadowgraph visualization technique, together with a high-speed camera, was used to provide the visual description of the shock structure in front of the inlet and to study the characteristics of buzz. Furthermore, pressure distribution over the spike surface was measured using several pressure sensors. Frequency of the buzz and... 

    Study of buzz phenomenon using visualization of external shock structure

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 233, Issue 7 , 2019 , Pages 2690-2698 ; 09544100 (ISSN) Farahani, M ; Jaberi, A ; Sharif University of Technology
    SAGE Publications Ltd  2019
    Abstract
    An experimental study was carried out on an axisymmetric supersonic inlet with external compression in order to investigate the buzz phenomenon at different angles of attack and mass flow rates. The model was equipped with accurate and high-frequency pressure sensors, and the tests were conducted at Mach numbers varying from 1.8 to 2.5, for various angles of attack. Shadowgraph visualization technique, together with a high-speed camera, was used to provide the visual description of the shock structure in front of the inlet and to study the characteristics of buzz. Furthermore, pressure distribution over the spike surface was measured using several pressure sensors. Frequency of the buzz and... 

    Free water surface oscillations in a closed rectangular basin with internal barriers

    , Article Scientia Iranica ; Volume 15, Issue 3 , Volume 15, Issue 3 , 2008 , Pages 315-322 ; 10263098 (ISSN) Kabiri Samani, A. R ; Ataie Ashtiani, B ; Sharif University of Technology
    Sharif University of Technology  2008
    Abstract
    Thee enclosed basin has certain natural frequencies of seiche, depending on the geometry of the water boundaries and the bathymetry of water depths. Therefore, the variation in the water surface at a point becomes irregular, as caused by the combination of several natural frequencies, which may be considered as the superposition of sinusoidal frequency components of different amplitude. This paper is mainly concerned with the motion of an incompressible irrotational fluid in a closed rectangular basin with internal impervious barriers. An analytical solution is presented for predicting the characteristic of generated waves in these types of basin. The equations of free water surface...