Loading...
Search for: ordinary-differential-equations
0.011 seconds
Total 141 records

    Limit analysis of FGM circular plates subjected to arbitrary rotational symmetric loads using von-Mises yield criterion

    , Article Acta Mechanica ; Volume 224, Issue 8 , 2013 , Pages 1601-1608 ; 00015970 (ISSN) Baghani, M ; Fereidoonnezhad, B ; Sharif University of Technology
    2013
    Abstract
    In this paper, employing the limit analysis theorem, critical loading on functionally graded (FG) circular plate with simply supported boundary conditions and subjected to an arbitrary rotationally symmetric loading is determined. The material behavior follows a rigid-perfectly plastic model and yielding obeys the von-Mises criterion. In the homogeneous case, the highly nonlinear ordinary differential equation governing the problem is analytically solved using a variational iteration method. In other cases, numerical results are reported. Finally, the results are compared with those of the FG plate with Tresca yield criterion and also in the homogeneous case with those of employing the... 

    On the existence of bounded positive solutions of Schrödinger equations in two-dimensional exterior domains

    , Article Applied Mathematics Letters ; Volume 20, Issue 12 , December , 2007 , Pages 1227-1231 ; 08939659 (ISSN) Hesaaraki, M ; Moradifam, A ; Sharif University of Technology
    2007
    Abstract
    We prove under quite general assumptions the existence of a bounded positive solution of the semilinear Schrödinger equation Δ u + f (x, u) = 0 in a two-dimensional exterior domain. Our results are independent of the behavior of f (x, u) when u is sufficiently small or sufficiently large and just require some knowledge about the nonlinearity f (x, u) for a ≤ u ≤ b, for some a, b > 0. We obtain solutions with a prescribed positive lower bound. © 2007 Elsevier Ltd. All rights reserved  

    A dynamical model for generating synthetic phonocardiogram signals

    , Article Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society ; 2011 , Pages 5686-5689 ; 1557170X (ISSN) ; 9781424441211 (ISBN) Almasi, A ; Shamsollahi, M. B ; Senhadji, L ; Sharif University of Technology
    Abstract
    In this paper we introduce a dynamical model for Phonocardiogram (PCG) signal which is capable of generating realistic synthetic PCG signals. This model is based on PCG morphology and consists of three ordinary differential equations and can represent various morphologies of normal PCG signals. Beat-to-beat variation in PCG morphology is significant so model parameters vary from beat to beat. This model is inspired of Electrocardiogram (ECG) dynamical model proposed by McSharry et al. and can be employed to assess biomedical signal processing techniques  

    Vibration and frequency analysis of non-uniform Timoshenko beams subjected to axial forces

    , Article 2003 ASME International Mechanical Engineering Congress, Washington, DC, 15 November 2003 through 21 November 2003 ; Volume 116, Issue 2 , 2003 , Pages 1057-1064 ; 15214613 (ISSN) Ohadi, A. R ; Mehdigholi, H ; Esmailzadeh, E ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2003
    Abstract
    Dynamic and stability analysis of non-uniform Timoshenko beam under axial loads is carried out. In the first case of study, the axial force is assumed to be perpendicular to the shear force, while for the second case the axial force is tangent to the axis of the beam column. For each case, a pair of differential equations coupled in terms of the flexural displacement and the angle of rotation due to bending was obtained. The parameters of the frequency equation were determined for various boundary conditions. Several illustrative examples of uniform and non-uniform beams with different boundary conditions such as clamped supported, elastically supported, and free end mass have been... 

    Approximate analytical solutions of an axially moving spacecraft appendage subjected to tip mass

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Vol. 228, issue. 9 , 2014 , pp. 1487-1497 ; ISSN: 09544100 Ghaleh, P. B ; Khayyat, A. A ; Farjami, Y ; Abedian, A ; Sharif University of Technology
    Abstract
    Approximate solutions for vibrations of flexible beam-type appendages subjected to tip mass are studied while uniform and exponential profiles for arm deployment are simulated. Applying an equivalent dynamical system and following Lagrangian approach, the equations of motion of the system are derived as nonlinear ordinary differential equations (ODEs) (with time-varying coefficients), in which the effect of the tip mass can be considered as some nonlinearity added to the 'no tip mass' case dynamics. The approximate closed-form solutions are obtained through a novel methodology using a computer algorithm, in which the solutions of the 'no tip mass' case are expanded by imposing quadratic... 

    Theoretical model for visible light saturable absorber nanolithography

    , Article Journal of Optics (United Kingdom) ; Volume 14, Issue 12 , 2012 ; 20408978 (ISSN) Tofighi, S ; Bahrampour, A. R ; Sharif University of Technology
    2012
    Abstract
    In this paper a saturable absorber medium is employed as an optical limiter to reduce the spot size to the range of several tens of nanometres. The characteristics of a Gaussian beam are theoretically analysed upon propagation through the saturable absorber medium. Based on Maxwell equations a system of coupled nonlinear ordinary differential equations for intensity, beam radius and beam curvature is obtained. Theoretical analyses and numerical results show that the behaviour of a Gaussian beam in a saturable absorber medium strongly depends on the initial characteristics of the laser beam. Numerical results indicate that, depending on the initial conditions and a suitable saturable absorber... 

    Nonlinear vibration and buckling analysis of beams using homotopy perturbation method

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010, Vancouver, BC ; Volume 10 , 2010 , Pages 463-469 ; 9780791844472 (ISBN) Mojahedi, M ; Moeenfard, H ; Ahmadian, M. T ; Sharif University of Technology
    2010
    Abstract
    In this paper, homotopy perturbation and modified Lindstedt-Poincare methods are employed for nonlinear free vibrational and buckling analysis of simply supported and double-clamped beams subjected to axial loads. Mid-plane stretching effect has also been accounted in the model. Galerkin's decomposition technique is implemented to convert the dimensionless equation of the motion to nonlinear ordinary differential equation. Homotopy and modified Lindstedt-Poincare (HPM) are applied to find analytic expressions for nonlinear natural frequencies and critical axial loads of the beams. Effects of design parameters such as axial load and slenderness ratio are investigated. The analytic expressions... 

    Investigation of the oscillatory behavior of electrostatically-Actuated microbeams

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010, Vancouver, BC ; Volume 10 , 2010 , Pages 619-626 ; 9780791844472 (ISBN) Mojahedi, M ; Moghimi Zand, M ; Ahmadian, M. T ; Sharif University of Technology
    2010
    Abstract
    Vibrations of electrostatically-Actuated microbeams are investigated. Effects of electrostatic actuation, axial stress and midplane stretching are considered in the model. Galerkin's decomposition method is utilized to convert the governing nonlinear partial differential equation to a nonlinear ordinary differential equation. Homotopy perturbation method (i.e. a special and simpler case of homotopy analysis method) is utilized to find analytic expressions for natural frequencies of predeformed microbeam. Effects of increasing the voltage, midplane stretching, axial force and higher modes contribution on natural frequency are also studied. The anayltical results are in good agreement with the... 

    Effect of entrance position on particle dispersion in the vortex engine

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010 ; Volume 7, Issue PARTS A AND B , 2010 , Pages 1103-1110 ; 9780791844441 (ISBN) Dehghani, S. R ; Saidi, M. H ; Mozafari, A. A ; Ghafourian, A ; Sharif University of Technology
    Abstract
    Particle dispersion in the vortex flow has been one of the most interesting subjects in recent years. Bidirectional vortex flow field is an industrial sample of the rotating flow which is used to obtain advantages of better mixing and combustion. In this work penetration and dispersion quality of the particles which are entering from various positions on the vortex engine walls have been numerically predicted. Head side, end side, and sidewall are considered as the entering positions. The particle has been assumed to be a rigid sphere. Initial velocity, diameter, and density of entering the particles are assumed to be known. If the particle length scale is considered not to be comparable... 

    Control of vibration amplitude, frequency and damping of an electrostatically actuated microbeam using capacitive, inductive and resistive elements

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010, Vancouver, BC ; Volume 10 , 2010 , Pages 263-270 ; 9780791844472 (ISBN) Pasharavesh, A ; Alizadeh Vaghasloo, Y ; Fallah, A ; Ahmadian, M. T ; Sharif University of Technology
    2010
    Abstract
    In this study vibration amplitude, frequency and damping of a microbeam is controlled using a RLC block containing a capacitor, resistor and inductor in series with the microbeam. Applying this method all of the considerable characteristics of the oscillatory system can be determined and controlled with no change in the geometrical and physical characteristics of the microbeam. Euler-Bernoulli assumptions are made for the microbeam and the electrical current through the microbeam is computed by considering the microbeam deflection and its voltage. Considering the RLC block, the voltage difference between the microbeam and the substrate is calculated. Two coupled nonlinear partial... 

    Modeling epidemic routing: capturing frequently visited locations while preserving scalability

    , Article IEEE Transactions on Vehicular Technology ; Volume 70, Issue 3 , 2021 , Pages 2713-2727 ; 00189545 (ISSN) Rashidi, L ; Dalili Yazdi, A ; Entezari Maleki, R ; Sousa, L ; Movaghar, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    This paper investigates the performance of epidemic routing in mobile social networks considering several communities which are frequently visited by nodes. To this end, a monolithic Stochastic Reward Net (SRN) is proposed to evaluate the delivery delay and the average number of transmissions under epidemic routing by considering skewed location visiting preferences. This model is not scalable enough, in terms of the number of nodes and frequently visited locations. In order to achieve higher scalability, the folding technique is applied to the monolithic model, and an approximate folded SRN is proposed to evaluate performance of epidemic routing. Discrete-event simulation is used to... 

    Modeling geometric non-linearities in the free vibration of a planar beam flexure with a tip mass

    , Article Proceedings of the ASME Design Engineering Technical Conference, 12 August 2012 through 12 August 2012 ; Volume 4, Issue PARTS A AND B , August , 2012 , Pages 363-371 ; 9780791845035 (ISBN) Moeenfard, H ; Awtar, S ; Sharif University of Technology
    2012
    Abstract
    The objective of this work is to create an analytical framework to study the non-linear dynamics of beam flexures with a tip mass undergoing large deflections. Hamilton's principal is utilized to derive the equations governing the nonlinear vibrations of the cantilever beam and the associated boundary conditions. Then, using a single mode approximation, these non-linear partial differential equations are reduced to two coupled non-linear ordinary differential equations. These equations are solved analytically using combination of the method of multiple time scales and homotopy perturbation analysis. Closed-form, parametric analytical expressions are presented for the time domain response of... 

    On dynamic stiffness of spacecraft flexible appendages in deployment phase

    , Article Aerospace Science and Technology ; Volume 47 , 2015 , Pages 1-9 ; 12709638 (ISSN) Bagheri Ghaleh, P ; Malaek, S. M ; Sharif University of Technology
    Abstract
    Deployment inertial effects of a spacecraft appendage on its flexible dynamics are investigated. The Euler-Bernoulli beam theory and the actual deployment profile, in which appendage axial motion accelerates from static state and then decelerates to end at zero velocity and acceleration, are employed. The study is concentrated on the arm dynamic stiffness introduced by inertial effects of the arm deployment, and the resultant effects on the arm flexible motions. Lagrange's equations and some appropriate shape functions in the series approximation method are employed to study the arm lateral elastic displacements. Finally a system of ordinary differential equations with time varying... 

    Bending analysis of thin skew plates using extended Kantorovich method

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010, Istanbul ; Volume 2 , 2010 , Pages 39-44 ; 9780791849163 (ISBN) Kargarnovin, M. H ; Joodaky, A ; Sharif University of Technology
    2010
    Abstract
    An accurate approximate closed-form solution is presented for bending of thin skew plates with clamped edges subjected to uniform loading using the extended Kantorovich method (EKM). Successive application of EKM together with the idea of weighted residual technique (Galerkin method) converts the governing forth-order partial differential equation (PDE) to two separate ordinary differential equations (ODE) in terms of oblique coordinates system. The obtained ODE systems are then solved iteratively with very fast convergence. In every iteration step, exact closed-form solutions are obtained for two ODE systems. It is shown that some parameters such as angle of skew plate have an important... 

    On the viscoelastic beam subjected to moving mass

    , Article Advances in Engineering Software ; Volume 41, Issue 2 , February , 2010 , Pages 240-247 ; 09659978 (ISSN) Mofid, M ; Tehranchi, A ; Ostadhossein, A ; Sharif University of Technology
    2010
    Abstract
    In this paper two methods are presented that can be used to determine the dynamic behavior of viscoelastic beams with different boundary conditions, carrying a moving mass. An analytical-numerical formulation that transforms the governing differential equation in viscoelastic media into a set of ordinary differential equations and thereafter a discrete element model based on assumption that continuous viscoelastic beam can be replaced by a system of rigid bars and joints which resist relative rotation of attached bars. The physical properties of the joints can be found through considering the viscoelastic model of beams material. Correctness of results has been ascertained by a comparison,... 

    Deriving relativistic Bohmian quantum potential using variational method and conformal transformations

    , Article Pramana - Journal of Physics ; Volume 86, Issue 4 , 2016 , Pages 747-761 ; 03044289 (ISSN) Rahmani, F ; Golshani, M ; Sarbishei, M ; Sharif University of Technology
    Abstract
    In this paper we shall argue that conformal transformations give some new aspects to a metric and changes the physics that arises from the classical metric. It is equivalent to adding a new potential to relativistic Hamilton-Jacobi equation. We start by using conformal transformations on a metric and obtain modified geodesics. Then, we try to show that extra terms in the modified geodesics are indications of a background force. We obtain this potential by using variational method. Then, we see that this background potential is the same as the Bohmian non-local quantum potential. This approach gives a method stronger than Bohm's original method in deriving Bohmian quantum potential. We do not... 

    Dielectric metasurfaces solve differential and integro-differential equations

    , Article Optics Letters ; Volume 42, Issue 7 , 2017 , Pages 1197-1200 ; 01469592 (ISSN) Abdollahramezani, S ; Chizari, A ; Eshaghian Dorche, A ; Jamali, M. V ; Salehi, J. A ; Sharif University of Technology
    OSA - The Optical Society  2017
    Abstract
    Leveraging subwavelength resonant nanostructures, plasmonic metasurfaces have recently attracted much attention as a breakthrough concept for engineering optical waves both spatially and spectrally. However, inherent ohmic losses concomitant with low coupling efficiencies pose fundamental impediments over their practical applications. Not only can all-dielectric metasurfaces tackle such substantial drawbacks, but also their CMOS-compatible configurations support both Mie resonances that are invariant to the incident angle. Here, we report on a transmittive metasurface comprising arrayed silicon nanodisks embedded in a homogeneous dielectric medium to manipulate phase and amplitude of... 

    A moment method for analysis the gain spectrum in fiber Raman amplifier with broadband pumps

    , Article Optics Communications ; Volume 281, Issue 4 , 2008 , Pages 587-591 ; 00304018 (ISSN) Bahrampour, A. R ; Teimourpour, M. H ; Rahimi, L ; Sharif University of Technology
    2008
    Abstract
    The governing equations of optical fiber Raman amplifier with broadband pumps in the steady state are systems of uncountable nonlinear ordinary differential equations (NODE). In this paper, the Moment method is used to reduce the uncountable system of NODE to a system of finite number of NODE. This system of equations is solved numerically. The results are compared with that of the full numerical method. It was shown that the Moment method is a precise and efficient technique for analysis of optical fiber Raman amplifier with broadband pumps. © 2007 Elsevier B.V. All rights reserved  

    Desulfurization of liquid-phase Butane by zeolite molecular sieve 13X in a fixed bed: Modeling, simulation, and comparison with commercial-scale plant data

    , Article Energy and Fuels ; Volume 22, Issue 1 , 2008 , Pages 570-575 ; 08870624 (ISSN) Shams, A ; Molaei Dehkordi, A ; Goodarznia, I ; Sharif University of Technology
    2008
    Abstract
    This paper deals with the modeling and simulation of binary liquid-phase adsorption of methyl mercaptan and hydrogen sulfide from a liquid butane stream by zeolite molecular sieve 13X in a fixed bed. The model equations account for the effect of axial dispersion and the inter- and intraparticle, mass-transfer resistances at isothermal operating conditions. Orthogonal collocation and Gill's fourth-order Runge-Kutta methods were used to solve the dimensionless general forms of the 4N-eoupled ordinary differential equations for simultaneous adsorption of the solutes by the adsorbent in a fixed bed. The model predictions were compared to the commercial-scale plant data of an Iranian... 

    A new approach to the analytical and numerical solution of the bidirectional vortex flow

    , Article 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, 8 July 2007 through 11 July 2007 ; Volume 5 , 2007 , Pages 4856-4869 ; 1563479036 (ISBN); 9781563479038 (ISBN) Jamaly, S. M ; Saidi, M. H ; Ghafourian, A ; Mozafari, A. A ; Dehghani, S. R ; Sharif University of Technology
    2007
    Abstract
    The solution for bulk fluid motion of a bidirectional coaxial vortex for application in vortex engine has been derived. The vortex engine is a novel combustion chamber in which swirl motion of reactants are used to maintain the chamber walls cool. The flow field has been considered both analytically and numerically. The model is based on incompressible, steady, axisymmetric, and non-reactive flow conditions. The governing PDEs are reduced to a system of nonlinear ODEs and then, by a coordinate transformation, their singularity has been relaxed. Solution domain has been decomposed into the inner viscous and outer inviscid regions, then, the velocity and pressure fields are obtained...