Loading...
Search for: order-reduction
0.011 seconds

    A low-order H∞ controller design for an active suspension system via linear matrix inequalities

    , Article JVC/Journal of Vibration and Control ; Volume 10, Issue 8 , 2004 , Pages 1181-1197 ; 10775463 (ISSN) Amirifar, R ; Sadati, N ; Sharif University of Technology
    2004
    Abstract
    We present an application of a new controller order reduction technique with stability and performance preservation based on linear matrix inequality optimization to an active suspension system. In this technique, the rank of the residue matrix of a proper rational approximation of a high-order H ∞ controller subject to the H∞ norm of a frequency-weighted error between the approximated controller and high-order H∞ controller is minimized. However, since solving this matrix rank minimization problem is very difficult, the rank objective function is replaced with the nuclear-norm that can be reduced to a semidefinite program, so that it can be solved efficiently. Application to the active... 

    Low Order Pre-compensator Design Using Linear Matrix Inequalities

    , M.Sc. Thesis Sharif University of Technology Nazmi, Shabnam (Author) ; Nobakhti, Amin (Supervisor) ; Thornhill, Nina (Co-Advisor)
    Abstract
    One of the most common problems encountered in multivariable systems is the interactions between the system inputs and outputs. Interaction causes difficulties in control of these systems. Hence reduction of interaction in multivariable systems is an important design objective. One way to do this is to employ a pre-compensator in the open loop systems. Several approaches with different design methods and optimization criterions have been proposed thus far. In this study the problem of interaction reduction for a square stable system is considered and a pre-compensator matrix is designed which reduces interactions in the interacting multivariable system.In this case the purpose is to use... 

    Review of Network Reduction Techniques and Their Applications in Transmission Network Fault Diagnosis

    , M.Sc. Thesis Sharif University of Technology Lotfi, Mehdi (Author) ; Bozorgmehry Boozarjomehry, Ramin (Supervisor)
    Abstract
    Monitoring and control of gas transmission networks are very challenging and important, this is due to the fact that interactions between various elements in the transmission network severely affect network’s overall performance. This makes it crucial for the monitoring and control systems to take into account the topology of the network, in their decision making and control scenario’s. On the other hand, in the event of any abnormality in the network behavior, , in order to accurately and quickly detect the cause of the abnormal conditions, there is a need for rapid and effective analysis of the network based on the measurements made therein and to identify the key and effective situations... 

    Improved Model Order Reduction of LTI Systems with Using LMIs

    , M.Sc. Thesis Sharif University of Technology Karimi Jirandehi, Ardeshir (Author) ; Nobakhti, Amin (Supervisor)
    Abstract
    Order reduction is a very important issue in Control Theory. A growing need for order reduction models in different fields such as simulation, identification, and design of control system shows this significance. Actually, a high-order system makes a great deal of complexity in designing hardware of control system, debugging, and implementation. Till nowadays, many repetitive as well as nonrepetitive methods with various criteria have been introduced to find low-order models. In this research, order reduction of linear time invariant system models is analyzed. The selected criterion for measuring error between original system and reduced order system is the norm of H1 because it is not only... 

    Optimal Sensor Locations for Monitoring of Fluid Transmission Networks Using Evolutionary Algorithms

    , M.Sc. Thesis Sharif University of Technology Dehghan Manshadi, Mehdi (Author) ; Bozorgmehry, Ramin (Supervisor)
    Abstract
    Monitoring of the water transmission networks is an essential factor to regard efficient, safe and economical strategic considerations. Several parameters (fluid pressure, fluid flow and fluid temperature in some cases) are measured to monitor the water transmission networks. The number and location of these measurements in deferent positions affect the cost and quality of the network states monitoring. It is obvious that measuring the all parameters and states of the network is not cost-effective even when it is possible. The conventional sensor-location methods have been developed based on the pressure variation stemmed from a leakage in the network. This study proposes a new procedure to... 

    Approximation of Nonlinear Systems Based on Multiple Linear Modeling

    , M.Sc. Thesis Sharif University of Technology Alem, Fakhreddin (Author) ; Haeri, Mohammad (Supervisor)
    Abstract
    Inthis thesis, we provide a reduced multiple linear approximationfornonlinear systems. This approximationis a weighted summation of reduced order models thatapproximates the states or output(s) of the nonlinear system. It can be used inreal-time control instead of high-ordernonlinear models in order toreduce thecomputational cost. The reduction of computation cost is claimed qualitatively, based on the linearity of the approximation and its less order compared to the original model. To form amultiple modelapproximation eachlinearmodelis obtained from linearization atanoperating point. Then,each model is reduced byalinearreduction method. We used truncation and balanced residualization... 

    Symmetry and partial order reduction techniques in model checking Rebeca

    , Article Acta Informatica ; Volume 47, Issue 1 , 2010 , Pages 33-66 ; 00015903 (ISSN) Jaghoori, M.M ; Sirjani, M ; Mousavi, M.R ; Khamespanah, E ; Movaghar, A ; Sharif University of Technology
    2010
    Abstract
    Rebeca is an actor-based language with formal semantics which is suitable for modeling concurrent and distributed systems and protocols. Due to its object model, partial order and symmetry detection and reduction techniques can be efficiently applied to dynamic Rebeca models. We present two approaches for detecting symmetry in Rebeca models: One that detects symmetry in the topology of inter-connections among objects and another one which exploits specific data structures to reflect internal symmetry in the internal structure of an object. The former approach is novel in that it does not require any input from the modeler and can deal with the dynamic changes of topology. This approach is... 

    Low-order H∞ controller design for an active suspension system via LMIs

    , Article IEEE Transactions on Industrial Electronics ; Volume 53, Issue 2 , 2006 , Pages 554-560 ; 02780046 (ISSN) Amirifar, R ; Sadati, N ; Sharif University of Technology
    2006
    Abstract
    An application of a new controller order reduction technique with stability and performance preservation based on linear matrix inequality optimization to an active suspension system is presented. In this technique, the rank of the residue matrix of a proper rational approximation of a high-order H∞controller subject to the H∞-norm of a frequency-weighted error between the approximated controller and the high-order H∞ controller is minimized. However, because solving this matrix rank minimization problem is very difficult, the rank objective function is replaced with a nuclear-norm that can be reduced to a semidefinite program so that it can be solved efficiently. Application to the active... 

    Non-fragile h∞ order reduction of LTI controllers

    , Article IEEE Control Systems Letters ; Volume 5, Issue 1 , 2021 , Pages 163-168 ; 24751456 (ISSN) Keyumarsi, S ; Nobakhti, A ; Tavazoei, M. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    The eigenvalue perturbation theorem is used to propose a convex fragility criterion with application to control system design. The criterion can be considered as a non-normality measure of the controller state-space matrix. Non-normality of a matrix is defined as its distance to the nearest real normal matrix within a convex normal subspace. Based on the criterion, an H∞ method for the order reduction of linear time-invariant (LTI) controllers is developed which leads to non-fragile reduced order controllers. 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission  

    Model reduction techniques for unstable second order-form systems

    , Article IEEJ Transactions on Electrical and Electronic Engineering ; Volume 16, Issue 3 , 2021 , Pages 445-454 ; 19314973 (ISSN) Ali, S ; Mohd-Mokhtar, R ; Haider, S ; Bukhari, S. H. R ; Rasool, A ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    In the present work, multiple non existing model order reduction (MOR) techniques for unstable second-order form systems (SOSs) are proposed. For unstable SOSs, continuous-time algebraic Lyapunov equations get unsolvable that halt the reduction process. To avoid this problem, unstable SOS is first decomposed into stable and unstable portions and balanced truncation is applied to the stable part. The obtained reduced order model (ROM) for the stable portion is augmented with the unstable portion to obtain the overall reduced system. It is observed that the second-order structure in ROM for the first technique gets lost as well as augmented unstable dynamics degrade the ROM performance. To... 

    Model reduction techniques for unstable second order-form systems

    , Article IEEJ Transactions on Electrical and Electronic Engineering ; Volume 16, Issue 3 , 2021 , Pages 445-454 ; 19314973 (ISSN) Ali, S ; Mohd Mokhtar, R ; Haider, S ; Bukhari, S. H. R ; Rasool, A ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    In the present work, multiple non existing model order reduction (MOR) techniques for unstable second-order form systems (SOSs) are proposed. For unstable SOSs, continuous-time algebraic Lyapunov equations get unsolvable that halt the reduction process. To avoid this problem, unstable SOS is first decomposed into stable and unstable portions and balanced truncation is applied to the stable part. The obtained reduced order model (ROM) for the stable portion is augmented with the unstable portion to obtain the overall reduced system. It is observed that the second-order structure in ROM for the first technique gets lost as well as augmented unstable dynamics degrade the ROM performance. To... 

    Partial order reduction for timed actors

    , Article 13th International Conference on Verified Software: Theories, Tools, and Experiments, VSTTE 2021 and 14th International Workshop on Numerical Software Verification, NSV 2021, 18 October 2021 through 19 October 2021 ; Volume 13124 LNCS , 2022 , Pages 43-60 ; 03029743 (ISSN); 9783030955601 (ISBN) Bagheri, M ; Sirjani, M ; Khamespanah, E ; Hojjat, H ; Movaghar, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    We propose a compositional approach for the Partial Order Reduction (POR) in the state space generation of asynchronous timed actors. We define the concept of independent actors as the actors that do not send messages to a common actor. The approach avoids exploring unnecessary interleaving of executions of independent actors. It performs on a component-based model where actors from different components, except for the actors on borders, are independent. To alleviate the effect of the cross-border messages, we enforce a delay condition, ensuring that an actor introduces a delay in its execution before sending a message across the border of its component. Within each time unit, our technique... 

    Non-Fragile Order Reduction of Linear Controllers

    , M.Sc. Thesis Sharif University of Technology Keyumarsi, Shaghayegh (Author) ; Nobakhti, Amin (Supervisor) ; Tavazoei, Mohammad Saleh (Supervisor)
    Abstract
    Most of the robust or optimal controllers can produce extremely fragile controllers [1], in the sense that vanishingly small perturbations of the coefficients of the designed controller destabilize the closed-loop control system. Modern control methods, including robust control, lead to high order controllers.Often times a reduced order controller is implemented. As a result, need for low order control design reducing controller’s ensitivity is tangible. Based on studies carried out, properties of normal matrices can be employed to define a fragility measure. In this thesis, a new convex criterion measuring controller fragility is defined. Then, a more resilient reduced order controller can... 

    Model Checking of Probabilistic Activity Networks

    , M.Sc. Thesis Sharif University of Technology Baghoolizadeh, Shirin (Author) ; Movaghar Rahimabadi, Ali (Supervisor)
    Abstract
    Some systems exhibit probabilistic and nondeterministic behavior. This behavior arises, for example, due to the use of randomized algorithms or presence of the unreliable components. Probabilistic Activity Network (PAN) is a flexible model for describing such systems. Every PAN is convertible to a Markov decision process. Up to now, there is no model checker which can operate directly on this model. In addition state space explosion arises as an important problem in model checking of real systems. We have developed a software tool called SPTMAN, for model checking of PAN. In this dissertation we are going to present a way for applying partial order reduction on PAN and then we will introduce... 

    Functional observer design with application to pre-compensated multi-variable systems

    , Article 2015 IEEE Conference on Control and Applications, CCA 2015 - Proceedings, 21 September 2015 through 23 September 2015 ; 2015 , Pages 620-625 ; 9781479977871 (ISBN) Nazmi, S ; Mohajerpoor, R ; Abdi, H ; Nahavandi, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Partial state estimation of dynamical systems provides significant advantages in practical applications. Likewise, pre-compensator design for multi variable systems invokes considerable increase in the order of the original system. Hence, applying functional observer to pre-compensated systems can result in lower computational costs and more practicability in some applications such as fault diagnosis and output feedback control of these systems. In this note, functional observer design is investigated for pre-compensated systems. A lower order pre-compensator is designed based on a H2 norm optimization that is designed as the solution of a set of linear matrix inequalities (LMIs). Next, a... 

    Reduced multiple model predictive control of an heating, ventilating, and air conditioning system using gap metric and stability margin

    , Article Building Services Engineering Research and Technology ; Volume 43, Issue 5 , 2022 , Pages 589-603 ; 01436244 (ISSN) Rikhtehgar, P ; Haeri, M ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    In this paper, a reduced multiple-model predictive controller based on gap metric and stability margin is presented to control heating, ventilating, and air conditioning (HVAC) systems. To tackle the strong nonlinearity and large number of degrees of freedom in HVAC system, two approaches, called Reduced Order Model Bank-Multiple Model (ROMB-MM) and Multiple Model-Reduced Order Model (MM-ROM), are introduced. In the first approach, the order reduction is performed prior to multiple models selection and in the second one multiple models selection is implemented before the model order reduction. Furthermore, soft switching is employed to enhance the closed-loop performance as well as to gain... 

    A novel approach for robust control of single-link manipulators with visco-elastic behavior

    , Article 10th International Conference on Computer Modelling and Simulation, EUROSIM/UKSim2008, Cambridge, 1 April 2008 through 3 April 2008 ; 2008 , Pages 685-690 ; 0769531148 (ISBN); 9780769531144 (ISBN) Torabi, M ; Jahed, M ; Sharif University of Technology
    2008
    Abstract
    Overwhelming number of control laws has been studied for control of robot manipulators with rigid links and joints. However controllers designed under this assumption may not accurately control the manipulator link due to visco-elastic properties that appear in the link behavior. In this study, a novel approach for robust control of a single-link manipulator is presented to force the link to have rigid motions, while it has visco-elastic behavior. In this regard, initially robot dynamics is extracted, followed by the design of four appropriate controllers through the loop-shaping approach. The obtained model is first represented in state space, however later converted to transfer function...