Loading...
Search for: operating-temperature
0.006 seconds
Total 40 records

    Semiconductor TiO2-Ga2O3 thin film gas sensors derived from particulate sol-gel route

    , Article Acta Materialia ; Volume 55, Issue 13 , 2007 , Pages 4455-4466 ; 13596454 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2007
    Abstract
    Nanostructured and mesoporous TiO2-Ga2O3 thin films with various Ti:Ga atomic ratios were prepared by a new straightforward particulate sol-gel route. Titanium isopropoxide and gallium (III) nitrate hydrate were used as precursors, and hydroxypropyl cellulose (HPC) was used as a polymeric fugitive agent (PFA) in order to increase the specific surface area (SSA). XRD and TEM analysis of the powders revealed that the Ga2O3 formed from the nitrate precursor retarded anatase-to-rutile transformation, crystallization and crystal growth. The average crystallite size of pure TiO2 powder annealed at 600-1000 °C were in the range 4-10 nm; the values that could be decreased to 2-6 nm for TiO2-Ga2O3... 

    Investigating the rheological properties of nanofluids of water/hybrid nanostructure of spherical silica/MWCNT

    , Article Thermochimica Acta ; Volume 578 , 20 February , 2014 , Pages 53-58 ; ISSN: 00406031 Baghbanzadeh, M ; Rashidi, A ; Soleimanisalim, A. H ; Rashtchian, D ; Sharif University of Technology
    Abstract
    Regarding the importance of rheological properties of water based drilling fluids, the effects of silica nanospheres, multiwall carbon nanotubes (MWCNTs) and two types of their hybrid, i.e. H1 (80 wt.% silica nanosphere/20 wt.% MWCNT) and H2 (50 wt.% silica nanosphere/50 wt.% MWCNT) on the viscosity and density of distilled water were investigated. According to the results, viscosity and density of the nanofluids increased with the concentration, while they were reduced by increasing the temperature. At high concentrations, the least increase in the viscosity of distilled water by adding the nanomaterials is related to H2 (8.2% increase at 1.0 wt.%). Likewise, the optimum operating... 

    Theoretical-experimental investigation of Co emission from an oil refinery incinerator

    , Article American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM ; Vol. 1C, issue , 2014 Darbandi, M ; Abrar, B ; Yazdi, M. K ; Zeinali, M ; Schneider, G. E ; Sharif University of Technology
    Abstract
    In this paper, we investigate the CO emission from an oil refinery gas incinerator both theoretically and experimentally. At the beginning of this research, our collected data from this incinerator showed that the CO contamination would be far exceeding the permissible environmental standards at the stack exhaust. Therefore, we decided to perform a combined theoretical-experimental study to find a reasonable solution to reduce the CO pollution suitably. Our theoretical study showed that a reliable solution would be to increase the incinerator operating temperature. However, we needed to collect some data from this incinerator to examine if our achieved analytical solution would work... 

    Threshold characteristics analysis of InP-based PhC VCSEL with buried tunnel junction

    , Article 2013 21st Iranian Conference on Electrical Engineering ; May , 2013 , Page(s): 1 - 4 ; 9781467356343 (ISBN) Marjani, S ; Hosseini, S. E ; Faez, R ; Sharif University of Technology
    2013
    Abstract
    The comprehensive optical-electrical-gain-thermal self-consistent model of the 1.55 μm AlGaInAs Photonic Crystal vertical cavity surface emitting diode lasers (PhC VCSELs) with buried tunnel junction (BTJ) has been applied to optimize its threshold characteristics. It shows that, for 5 μm devices, the room temperature (RT) threshold current equal to only 0.59 mA and maximum operating temperature equal to as much as 380 K. Results suggest that, the 5 μm AlGaInAs PhC VCSELs seem to be the most optimal ones for light sources in high performance optical communication systems  

    Pt and Pd as catalyst deposited by hydrogen reduction of metal salts on WO3 films for gasochromic application

    , Article Applied Surface Science ; Volume 273 , May , 2013 , Pages 261-267 ; 01694332 (ISSN) Tahmasebi Garavand, N ; Mahdavi, S. M ; Iraji Zad, A ; Sharif University of Technology
    2013
    Abstract
    In this study, tungsten oxide films were deposited by pulsed-laser deposition (PLD) technique. The as-deposited films were annealed at 250 °C in air for 1 h. The surface morphology, microstructure, crystalline phase, and chemical composition of the films were characterized by SEM, XRD and XPS techniques. Pt nanoparticles were deposited onto the tungsten oxide films through a two-step process. First of all, a layer of PtCl2 was coated on the WO3 surface by drop-drying the PtCl2 solution onto the WO3 surface at 60 °C. Consequently, the reduction of the PtCl2 into the metallic Pt nanoparticles was performed at 200 °C. In this study, the effect of the temperature during hydrogen reduction of... 

    Hydrogen sensor based on MWNTs/WO 3

    , Article Proceedings of IEEE Sensors ; 2011 , Pages 5-7 ; 9781424492886 (ISBN) Azam, I. Z ; Roghayeh, G ; IEEE SENSORS Council ; Sharif University of Technology
    Abstract
    In this article we report hydrogen sensing property of WO 3/MWNTs thin films that were fabricated by spin-coating on alumina substrates. The MWNTs were initially functionalized (f-MWNTs) to enhance dispersion in the sol of multiwalled carbon nanotubes (MWNTs) and tungsten trioxide (WO 3). Microstructure, morphology and chemical composition of the materials were characterized by SEM, TEM, XRD and XPS methods. Our results show WO 3 nanoparticles were nucleated on oxygenated group on surface of f-MWNTs in hybrid suspension. After annealing the films at 350 °C, electrical conductance measurements at different operating temperature were performed and the results indicates rather fast and linear... 

    Experimental and analytical study of thermohydraulic performance of a novel loop heat pipe with an innovative active temperature control method

    , Article Applied Thermal Engineering ; Volume 143 , 2018 , Pages 964-976 ; 13594311 (ISSN) Khalili, M ; Mostafazade Abolmaali, A ; Shafii, M. B ; Sharif University of Technology
    Abstract
    In this study, a novel type of LHP is innovated, fabricated, and its performance is assessed by numerous experiments. Compared to conventional LHPs, this novel design has some modifications in its evaporator and reservoir configuration. This particular type has a simpler and less costly fabrication procedure compared to other LHPs and it yields acceptable performance. Additionally, a novel method is introduced to control the temperature distribution in the system. A steel ball is placed in the evaporator to actively control the operating temperature. The ball is moved by two magnets installed outside of the evaporator. Moreover, a steady-state one-dimensional mathematical model of the... 

    Low temperature study on the behavior of reinforced bitumen in asphalt via addition of synthesized basalt

    , Article Journal of Testing and Evaluation ; Volume 47, Issue 5 , 2019 , Pages 3634-3645 ; 00903973 (ISSN) Honarmand, M ; Tanzadeh, J ; Jandaghi, H. R ; Sharif University of Technology
    ASTM International  2019
    Abstract
    In traffic engineering, one of the problems presented by slate pavement, besides being costly to repair and maintain, is the insufficient resistance of bitumen against traffic loads in low temperatures. In this study, the effect of synthesized basalt modifier has been assessed via four different tests to improve bitumen performance. Hence, the enhancement of resistance to traffic loads at low temperatures as an essential problem of asphalt superstructure in traffic engineering has been taken into account. The bending beam rheometer test was conducted at three temperatures of-6°C,-12°C, and-18°C, and the softening point and permeability index tests were performed. A Fourier transform infrared... 

    Effect of alumina on the performance and characterization of cross-linked PVA/PEG 600 blended membranes for CO2/N2 separation

    , Article Separation and Purification Technology ; Volume 210 , 2019 , Pages 627-635 ; 13835866 (ISSN) Dilshad, M. R ; Islam, A ; Hamidullah, U ; Jamshaid, F ; Ahmad, A ; Zahid Butt, M. T ; Ijaz, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this work, poly(vinyl) alcohol (PVA)/poly(ethylene) glycol (PEG) 600 g/mol cross-linked membranes with different alumina (Al2O3) content were synthesized. The membranes were then characterized by FTIR, TGA, DSC, SEM, mechanical strength and permeation properties for carbon dioxide and nitrogen gases at different operating temperatures. The FTIR results confirmed the acetal linkages of cross-linking at 1083 cm−1 and the presence of stretching and bending peaks of Al-O bond at 598 and 444 cm−1, respectively. TGA results showed that the thermal stabilities of the membranes improved with the addition of alumina particles. DSC analysis proved that the glass transition temperature of the... 

    Enhanced Activity of Pr6O11 and CuO Infiltrated Ce0.9Gd0.1O2 Based Composite Oxygen Electrodes

    , Article Journal of the Electrochemical Society ; Volume 167, Issue 2 , January , 2020 Khoshkalam, M ; Faghihi Sani, M. A ; Tong, X ; Chen, M ; Hendriksen, P. V ; Sharif University of Technology
    Institute of Physics Publishing  2020
    Abstract
    Operation of solid oxide fuel/electrolysis cells (SOFC/SOEC) at high temperatures (T > 850 °C) is accompanied by degradation phenomena, which severely affect the operational lifetime of the cell. Degradation processes are expected to occur slower at low temperatures. However, significant reduction in electrocatalytic activity of the oxygen electrode, is one of the major challenges in decreasing the operating temperature down to 500 °C-650 °C. Recently, Pr6O11 infiltrated Ce0.9Gd0.1O2 (CGO) based electrodes have been proposed to realize high electrochemical performance at intermediate temperature. In this study, Pr-oxide has been infiltrated into a well performing sub-micro... 

    Separation of CO2/CH4 through alumina-supported geminal ionic liquid membranes

    , Article Journal of Membrane Science ; Vol. 455 , 2014 , pp. 229-235 ; ISSN: 03767388 Shahkaramipour, N ; Adibi, M ; Seifkordi, A. A ; Fazli, Y ; Sharif University of Technology
    Abstract
    Interesting properties of ionic liquids lead to their application as sub-component of membrane structures. Supported ionic liquid membranes (SILMs) are porous membranes whose pores are saturated with ionic liquids. Two ionic liquids, pr[mim]2[Tf2N]2 [1,3-di(3-methyl-imidazolium) propane bis(trifluoromethylsulfonyl) imide] and, h[mim]2 [Tf2N]2 [(1,6-di(3-methylimidazolium)hexane bis(trifluoromethylsulfonyl)imide)], were synthesized in our laboratory and stabilized on an alumina porous support. Permeability and permselectivity of carbon dioxide and methane using membranes containing these ionic liquids were then measured. The experiments were performed in the pressure range of 10-50kPa and... 

    The effect of operating temperature on gasochromic properties of amorphous and polycrystalline pulsed laser deposited WO 3 films

    , Article Sensors and Actuators, B: Chemical ; Volume 169 , July , 2012 , Pages 284-290 ; 09254005 (ISSN) Garavand, N. T ; Mahdavi, S. M ; Zad, A. I ; Ranjbar, M ; Sharif University of Technology
    2012
    Abstract
    In this study, tungsten oxide films were synthesized by pulsed laser deposition (PLD) method. The as-deposited films were annealed at a temperature of 250 and 350°C in air for 1 h. The surface morphology, microstructure, crystalline phase and chemical composition of the as-prepared and annealed films were characterized by SEM, XRD and XPS techniques, respectively. Deposition of Pd nanoparticles onto the tungsten oxide surface was performed by hydrogen reduction of a drop-drying PdCl 2 solution onto a WO 3 surface at 60°C. The influence of the annealing temperature on microstructure and gasochromic performance as well as the effect of operating temperature is presented in this work. Results... 

    Modeling and sensitivity analysis of styrene monomer production process and investigation of catalyst behavior

    , Article Computers and Chemical Engineering ; Volume 40 , 2012 , Pages 1-11 ; 00981354 (ISSN) Tamsilian, Y ; Ebrahimi, A. N ; Ramazani S.A., A ; Abdollahzadeh, H ; Sharif University of Technology
    2012
    Abstract
    In this work, a fundamental kinetic model based upon the Hougen-Watson non-porosity formalism was derived and used to simulate dehydrogenation and oxidation axial flow reactors. In addition, partial pressure profiles of components during styrene production process inside porous catalyst were obtained using Dusty-Gas model. The preservation equations are adopted to calculate temperature and flow profiles in the reactors filled with iron-potassium promoted catalyst pellets. The presented mathematical model for ethylbenzene dehydrogenation consists of nonlinear simultaneous differential equations with multiple dependent variables. Simulation results such as selectivity and operating temperature... 

    Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow

    , Article Experimental Thermal and Fluid Science ; Volume 35, Issue 3 , April , 2011 , Pages 495-502 ; 08941777 (ISSN) Zamzamian, A ; Oskouie, S. N ; Doosthoseini, A ; Joneidi, A ; Pazouki, M ; Sharif University of Technology
    2011
    Abstract
    Nanofluid is the term applied to a suspension of solid, nanometer-sized particles in conventional fluids; the most prominent features of such fluids include enhanced heat characteristics, such as convective heat transfer coefficient, in comparison to the base fluid without considerable alterations in physical and chemical properties. In this study, nanofluids of aluminum oxide and copper oxide were prepared in ethylene glycol separately. The effect of forced convective heat transfer coefficient in turbulent flow was calculated using a double pipe and plate heat exchangers. Furthermore, we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical... 

    Electrophoretic deposition and sintering of a nanostructured manganese-cobalt spinel coating for solid oxide fuel cell interconnects

    , Article Ceramics International ; Volume 42, Issue 6 , May , 2016 , Pages 6648–6656 ; 02728842 (ISSN) Mirzaei, M ; Simchi, A ; Faghihi Sani, M. A ; Yazdanyar, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Solid oxide fuel cell (SOFC) is one of the promising candidates for clean energy production. Due to the high operating temperature of SOFCs, a protective coating is commonly applied on the surface of interconnects to prevent oxidation. In this study, electrophoretic deposition was employed to prepare a manganese-cobalt spinel coating on ferritic stainless steel (AISISAE430) substrates. Nanostructured MnCo2O4 powder with an average crystallite size of 60nm was utilized and the sintering behavior of the coatings at different temperatures was studied. Non-isothermal and isothermal sintering behavior of the powder were examined by employing a sensitive dilatometer. Master sintering curve of the... 

    CO2/H2 separation using a highly permeable polyurethane membrane: Molecular dynamics simulation

    , Article Journal of Molecular Structure ; Volume 1100 , 2015 , Pages 401-414 ; 00222860 (ISSN) Azizi, M ; Mousavi, S. A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Abstract In this study, Molecular Dynamics (MD) and Grand Canonical Monte Carlo (GCMC) simulations were conducted to investigate the diffusivity, solubility, and permeability of CO2, CO, H2, and H2O in a polyurethane membrane at three different temperatures. The characterization of the simulated structures was carried out using XRD, FFV, Tg and density calculation, and cavity size distribution. The obtained results were within the expectations reported data in the literature based on the experimental approach, indicating the authenticity of approached in this work. The results showed that the highest diffusivity and permeability coefficients were observed for... 

    Hydrogen separation through LSF-perovskite membrane prepared by chelating method

    , Article Journal of Natural Gas Science and Engineering ; Volume 22 , January , 2015 , Pages 483-488 ; 18755100 (ISSN) Ghanbari, B ; Ghasemi, F ; Ganji Babakhani, E ; Taheri, Z ; Sharif University of Technology
    Elsevier  2015
    Abstract
    La0.3Sr0.7FeO3-δ (LSF) perovskite was prepared according to two methods: (1) applying new phenolic derivative of serine amino acid (L) as chelating agent, and (2) in absence of L as ligand-free perovskite (LFP). The newly prepared aminophenolic ligand L was fully characterized by 1H and 13C NMR, IR as well as elemental analysis while the LSF perovskite samples were characterized using the IR spectra, powder x-ray diffraction (PXRD) patterns, and SEM micrographs. The PXRD pattern obtained for the perovskite prepared by L (PPP) indicated on the presence of pure perovskite phase. The hydrogen permeation through PPP and LFP membranes with thickness of 1.0mm were measured as a function of... 

    Hydrodynamic and electrochemical modeling of vanadium redox flow battery

    , Article Mechanics and Industry ; Volume 16, Issue 2 , 2015 ; 22577777 (ISSN) Ozgoli, H. A ; Elyasi, S ; Mollazadeh, M ; Sharif University of Technology
    EDP Sciences  2015
    Abstract
    Two and three dimensional modeling of a single cell of vanadium redox flow battery has been done thoroughly according to electrochemical and fluid mechanic equations in this study. The modeling has been done in stationary state and its results have been presented in three chemical, electrical and mechanical sub models. The parametric analysis on some of important factors in cell operation demonstrated that increase in electrode and membrane conductivity and electrode porosity contributes to electric potential increase in cells. Also operational temperature increase leads to decrease in cells' voltage. Better fluid distribution on the electrode surface area results in better cell operation,... 

    A transient model of vanadium redox flow battery

    , Article Mechanics and Industry ; Volume 17, Issue 4 , 2016 ; 22577777 (ISSN) Ozgoli, H. A ; Elyasi, S ; Sharif University of Technology
    EDP Sciences  2016
    Abstract
    It has been attempted to gain a new viewpoint in transient cell modeling of vanadium redox flow battery. This has been achieved by considering electrochemical relations along with conceptual electrical circuit of this kind of battery. The redox flow battery is one of the best rechargeable batteries because of its capability to average loads and output power sources. A model of transient behavior is presented in this paper. The transient features are considered as the most remarkable characteristics of the battery. The chemical reactions, fluid flow, and electrical circuit of the structure govern the dynamics. The transient behavior of the redox flow battery based on chemical reactions is... 

    An experimental investigation and optimization of screen mesh heat pipes for low-mid temperature applications

    , Article Experimental Thermal and Fluid Science ; Volume 84 , 2017 , Pages 120-133 ; 08941777 (ISSN) Jafari, D ; Shamsi, H ; Filippeschi, S ; Di Marco, P ; Franco, A ; Sharif University of Technology
    Abstract
    The perspectives of utilization of a screen mesh heat pipe (HP) for low to medium operating temperature applications are studied in this study. A two-dimensional mathematical model for heat and mass transfer of HPs is presented to define its performances under steady state operations. The model couples heat conduction in the wall with both liquid flow in the wick and vapor flow in the core. Experimental analysis is developed to evaluate the influence of operating parameters (the orientation and the cooling temperature) as well as the evaporator section length on the performance of the HP. Furthermore, a modeling approach to optimize the HP performance from a thermal point of view is...