Loading...
Search for: open-circuit-potential
0.007 seconds

    A comparative study of the electrooxidation of ethylene glycol on transition metal electrodes in alkaline solution

    , Article Journal of New Materials for Electrochemical Systems ; Volume 15, Issue 4 , 2012 , Pages 255-263 ; 14802422 (ISSN) Danaee, I ; Jafarian, M ; Shahnazi Sangachin, A. A ; Gobal, F ; Sharif University of Technology
    2012
    Abstract
    Electrodes made of group VIII and IB metals were examined for their redox process and electrocatalytic activities towards the oxidation of ethylene glycol in alkaline solutions. The method of cyclic voltammetery (CV) and Open circuit potentials measurement (OCP) was employed. It is found that considerable electrooxidation current are observed for silver and copper but lower anodic overpotential for oxidation is obtained for gold and platinum. Oxide layer produced on the surface of all electrodes in alkaline solution under anodic scan participates in ethylene glycol electrooxidation. Oxidation current observed in the reverse scans for platinum and gold are higher than those observed in... 

    Investigation of Pb/PbS a positive Schottky junction formed on conductive glass in contact with alkaline solution

    , Article Journal of Applied Physics ; Vol. 116, issue. 3 , July , 2014 ; ISSN: 00218979 Heidaripour, A ; Jafarian, M ; Gobal, F ; Mahjani, M. G ; Miandari, S ; Sharif University of Technology
    Abstract
    PbS on Pb thin film (Pb/PbS) was deposited on conductive glass (CG) substrate (CG/Pb/PbS) using electrochemical techniques to investigate the Schottky junction in solution. The CG/Pb/PbS electrode was investigated by different techniques based on thermionic emission theory. Electrochemical cell consisted of the CG/Pb/PbS as a working electrode in an alkaline solution showed character of the Schottky junction. Reduction and oxidation of H2O on the CG/Pb/PbS electrode were enhanced under illumination. Water photo splitting is the main process. Study of linear sweep voltammetry at around open circuit potential (OCP) allowed proposing a model based on the Schottky junction which is charged at... 

    Quantitative determination of linear alkylbenzene sulfonate (LAS) concentration and simultaneous power generation in a microbial fuel cell-based biosensor

    , Article Journal of Cleaner Production ; Volume 294 , 2021 ; 09596526 (ISSN) Askari, A ; Vahabzadeh, F ; Mardanpour, M. M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Linear alkylbenzene sulfonate (LAS), one of the most widely used synthetic surfactants in laundry detergent industry, is considered a hazardous contaminant in wastewater. In the present study, a microbial fuel cell (MFC) based biosensor is developed to quantitively determine the LAS concentration in wastewater. To do so, the developed MFC is fed with LAS concentration of 60 mg l−1. Finally, a sustained biofilm is formed after almost 34 days and the highest open circuit potential of 425 mV is recorded. The maximum power and current densities of 75 mW m−3 and 663 mA m−3 are obtained, respectively; and the internal resistance of the MFC-based biosensor is calculated to be about 1 kΩ. After 98... 

    The optimum combination of tool rotation rate and traveling speed for obtaining the preferable corrosion behavior and mechanical properties of friction stir welded AA5052 aluminum alloy

    , Article Materials and Design ; Volume 50 , 2013 , Pages 620-634 ; 02613069 (ISSN) Bagheri Hariri, M ; Gholami Shiri, S ; Yaghoubinezhad, Y ; Mohammadi Rahvard, M ; Sharif University of Technology
    Elsevier Ltd  2013
    Abstract
    This study attempts to find an optimum combination of the welding tool rotation rate (ω) and traveling speed (υ), concerning the corrosion and mechanical properties of Friction Stir Welded (FSWed) AA5052 Aluminum alloy. The effect of the tool speeds on the FSWed AA5052 are investigated via potentiodynamic polarization, open circuit potential (OCP) monitoring, test of the susceptibility to intergranular corrosion, weight loss, tension and micro-hardness tests. Optical microscope and Scanning Electron Microscopy (SEM) were employed for studying the morphology and analyzing the probable intergranular attacks. It was found that by increasing υ up to 200. mm/min at ω=400 rpm, the microstructural... 

    Produced Water Treatment with Simultaneous Bioenergy Production Using Novel Bioelectrochemical Systems

    , Article Electrochimica Acta ; Volume 180 , 2015 , Pages 535-544 ; 00134686 (ISSN) Ghasemi Naraghi, Z ; Yaghmaei, S ; Mardanpour, M. M ; Hasany, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    The present study investigated the biological treatment of produced water in a microbial electrochemical cell (MXC). The main objectives were to develop a novel spiral microbial electrochemical cell (SMXC) and test its performance for produced water treatment under highly saline conditions (salinity > 200000 ppm). The bioelectrochemical performance of the system was also evaluated in terms of power and hydrogen production over time. The comparatively inexpensive material and ease of application increased the feasibility of the SMXC configuration for produced water treatment. Optimal SMXC performance as a microbial fuel cell was achieved at a maximum open circuit potential of 330 mV, maximum... 

    Synergistic inhibition effect of zinc acetylacetonate and benzothiazole in epoxy coating on the corrosion of mild steel

    , Article Journal of Materials Engineering and Performance ; Volume 24, Issue 6 , 2015 , Pages 2464-2472 ; 10599495 (ISSN) Amoozadeh, S. M ; Mahdavian, M ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    The corrosion inhibition effect of zinc acetylacetonate (ZAA) and benzothiazole (BTH) mixture was evaluated for mild steel in 3.5% NaCl solution. To this end, ZAA:BTH mixtures ranged from 6:1 to 1:6 mol ratios were examined by weight loss and open circuit potential to obtain optimal mole ratio. The optimal mixture of ZAA:BTH at 1:5 mol ratio showed a significant corrosion inhibition efficiency proved by electrochemical impedance spectroscopy and polarization studies. The addition of the optimal mixture of ZAA:BTH to epoxy coating showed a considerable increase of corrosion protection evaluated by salt spray exposure  

    Influence of energy band alignment in mixed crystalline TiO2 nanotube arrays: Good for photocatalysis, bad for electron transfer

    , Article Journal of Physics D: Applied Physics ; Volume 50, Issue 50 , 2017 ; 00223727 (ISSN) Mohammadpour, R ; Sharif University of Technology
    Abstract
    Despite the wide application ranges of TiO2, the precise explanation of the charge transport dynamic through a mixed crystal phase of this semiconductor has remained elusive. Here, in this research, mixed-phase TiO2 nanotube arrays (TNTAs) consisting of anatase and 0-15% rutile phases has been formed through various annealing processes and employed as a photoelectrode of a photovoltaic cell. Wide ranges of optoelectronic experiments have been employed to explore the band alignment position, as well as the depth and density of trap states in TNTAs. Short circuit potential, as well as open circuit potential measurements specified that the band alignment of more than 0.2 eV exists between the... 

    Effects of chemical, electrochemical, and electrospun deposition of polyaniline coatings on surface of anode electrodes for evaluation of MFCs' performance

    , Article Journal of Environmental Chemical Engineering ; Volume 8, Issue 5 , 2020 Ghasemi, B ; Yaghmaei, S ; Ghaderi, S ; Bayat, A ; Mardanpour, M. M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this research, different coating methods of polyaniline (PANI) on the anode electrodes and their performance in microbial fuel cells (MFCs) were investigated. The performance of systems in a discontinuous state was studied using the high energy content dairy industry wastewater. The phase enrichment assessment was conducted under open circuit potential (OCP) and the performance of MFCs coated with PANI through three methods was evaluated via chemical oxygen demand (COD), polarization, power density, energy coulombic efficiency (ECE), coulombic efficiency (CE), and potential efficiency (PE) values. The results showed the maximum value for the power density of 28Wm-3, CE of 17%, and COD of... 

    Enhanced electricity generation from whey wastewater using combinational cathodic electron acceptor in a two-chamber microbial fuel cell

    , Article International Journal of Environmental Science and Technology ; Volume 9, Issue 3 , 2012 , Pages 473-478 ; 17351472 (ISSN) Nasirahmadi, S ; Safekordi, A. A ; Sharif University of Technology
    2012
    Abstract
    While energy consumption is increasing worldwide due to population growth, the fossil fuels are unstable and exhaustible resources for establishing sustainable life. Using biodegradable compounds present in the wastewater produced in industrial process as a renewable source is an enchanting approach followed by scientists for maintaining a sustainable energy production to vanquish this problem for ulterior generations. In this research, bioelectricity generation with whey degradation was investigated in a two-chamber microbial fuel cell with humic acid as anodic electron mediator and a cathode compartment including combinational electron acceptor. Escherichia coli was able to use the... 

    Characterization of a microfluidic microbial fuel cell as a power generator based on a nickel electrode

    , Article Biosensors and Bioelectronics ; Volume 79 , 2016 , Pages 327-333 ; 09565663 (ISSN) Mardanpour, M. M ; Yaghmaei, S ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    This study reports the fabrication of a microfluidic microbial fuel cell (MFC) using nickel as a novel alternative for conventional electrodes and a non-phatogenic strain of Escherichia coli as the biocatalyst. The feasibility of a microfluidic MFC as an efficient power generator for production of bioelectricity from glucose and urea as organic substrates in human blood and urine for implantable medical devices (IMDs) was investigated. A maximum open circuit potential of 459mV was achieved for the batch-fed microfluidic MFC. During continuous mode operation, a maximum power density of 104Wm-3 was obtained with nutrient broth. For the glucose-fed microfluidic MFC, the maximum power density of...