Loading...
Search for: nusselt-number
0.008 seconds
Total 100 records

    Modeling of liquid-gas flow through Porous media: application in metal recovery

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Mousavi, M ; Yaghmaei, S ; Jafari, A ; Zamankhan, P ; Sharif University of Technology
    2006

    Rate of heat transfer in polypropylene tubes in solar water heaters

    , Article Solar Energy ; Volume 74, Issue 6 , 2003 , Pages 441-445 ; 0038092X (ISSN) Razavi, J ; Riazi, M. R ; Mahmoodi, M ; Sharif University of Technology
    Elsevier Ltd  2003
    Abstract
    A heat transfer rate was determined for polypropylene tubes in solar water heaters for the Reynolds number range 800-5600. Experiments were conducted in ambient temperatures of 34 to 37°C. Data were correlated in the form of Nusselt numbers as: Nu=0.0015 Re0.75 Pr1/3 with correlation coefficient of 0.95. Such data can be used to predict heat transfer rates in a polypropylene solar heater in Tehran where the experiments were performed. An application of the results is shown in an example. © 2003 Elsevier Ltd. All rights reserved  

    Utilization of hybrid nanofluids in solar energy applications: A review

    , Article Nano-Structures and Nano-Objects ; Volume 20 , 2019 ; 2352507X (ISSN) Ahmadi, M. H ; Ghazvini, M ; Sadeghzadeh, M ; Alhuyi Nazari, M ; Ghalandari, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Hybrid nanofluids have several advantages compared with the conventional types due to their modified properties. Their enhanced thermophysical and rheological properties make them more appropriate for solar energy systems. In this review paper, an overview of solar energy systems is represented, and afterwards, applications of hybrid nanofluids in various solar technologies, especially solar thermal, are reviewed. Comparison between the nanofluidic systems, and the conventional ones is performed in order to gain a deeper insight into the advantages of using nanofluids. According to the results of the reviewed studies, the most important reason for performance enhancement of nanofluidic solar... 

    Laminar forced convection simulation at different boundary conditions with averaging scheme (numerical and theoretical research)

    , Article Mathematical Modelling of Engineering Problems ; Volume 6, Issue 4 , 2019 , Pages 519-526 ; 23690739 (ISSN) Adibi, T ; Adibi, O ; Sharif University of Technology
    International Information and Engineering Technology Association  2019
    Abstract
    In this paper, cavity flow is simulated numerically. Forced convection in different Reynolds numbers between 100 and 5000 is simulated. Different and complex thermal boundary conditions are applied and various parameters are calculated numerically. Up and down walls are in constant temperature and left and right walls are thermal insulation in the first thermal boundary condition. The Left and the down walls are in constant temperature and the temperature of the up and the right walls changes linearly in the second thermal boundary condition. For the third thermal boundary condition, the left and the down walls are in constant temperature and the temperature of the up and the right walls... 

    Laminar forced convection simulation at different boundary conditions with averaging scheme (numerical and theoretical research)

    , Article Mathematical Modelling of Engineering Problems ; Volume 6, Issue 4 , 2019 , Pages 519-526 ; 23690739 (ISSN) Adibi, T ; Adibi, O ; Sharif University of Technology
    International Information and Engineering Technology Association  2019
    Abstract
    In this paper, cavity flow is simulated numerically. Forced convection in different Reynolds numbers between 100 and 5000 is simulated. Different and complex thermal boundary conditions are applied and various parameters are calculated numerically. Up and down walls are in constant temperature and left and right walls are thermal insulation in the first thermal boundary condition. The Left and the down walls are in constant temperature and the temperature of the up and the right walls changes linearly in the second thermal boundary condition. For the third thermal boundary condition, the left and the down walls are in constant temperature and the temperature of the up and the right walls... 

    Series solution for heat transfer of continuous stretching sheet immersed in a micropolar fluid in the existence of radiation

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; Volume 23, Issue 2 , 2013 , Pages 289-304 ; 09615539 (ISSN) Shadloo, M. S ; Kimiaeifar, A ; Bagheri, D ; Sharif University of Technology
    2013
    Abstract
    Purpose - The purpose of this paper is to study a two-dimensional steady convective flow of a micropolar fluid over a stretching sheet in the presence of radiation with constant temperature. Design/methodology/approach - The corresponding momentum, microrotation and energy equations are analytically solved using homotopy analysis method (HAM). Findings - To validate the method, investigate the accuracy and convergence of the results, a comparison with existing numerical and experimental results is done for several cases. Finally, by using the obtained analytical solution, for the skin-friction coefficient and the local Nusselt number as well as the temperature, velocity and angular velocity,... 

    Friction factor and nusselt number in annular flows with smooth and slotted surface

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; 2018 ; 09477411 (ISSN) Nouri Borujerdi, A ; Erfanian Nakhchi, M ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    The purpose of this experimental work is to study the effect of slot depth to width ratio, rotational motion and inlet velocity on friction factor and Nusselt number in an annular flow between two concentric cylinders with smooth and slotted surface. The heated outer surface is stationary and the unheated inner one is rotating. This configuration is popular in industrial applications such as internal air system of gas turbine engines, cooling of rotating machinery, techniques of chemical vapor deposition and solidification of pure metals. The results show that the ratio of average slotted surface friction factor to that of the smooth one enhances by increasing the slot depth to width ratio... 

    Uniform cooling of a flat surface by an optimized array of turbulent impinging air jets

    , Article Heat Transfer Engineering ; Volume 40, Issue 20 , 2019 , Pages 1750-1761 ; 01457632 (ISSN) Sedighi, E ; Mazloom, A ; Hakkaki Fard, A ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    The aim of this study is to investigate the uniform cooling of a hot isothermal heated target surface, using four turbulent impinging air jets. Eight parameters including the width of jets, the space between the inner jets, the space between inner and outer jets, the distance of jets from the plate, the impingement angle of jets, and the overall volumetric flow rate of the cooling air per unit depth of the nozzle are considered as design variables. The normalized standard deviation of the local Nusselt number from the desired Nusselt number is considered as the objective function. An optimization algorithm based on pattern search method is utilized to obtain the optimum array of the jets.... 

    Friction factor and nusselt number in annular flows with smooth and slotted surface

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 55, Issue 3 , 2019 , Pages 645-653 ; 09477411 (ISSN) Nouri Borujerdi, A ; Erfanian Nakhchi, M ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    The purpose of this experimental work is to study the effect of slot depth to width ratio, rotational motion and inlet velocity on friction factor and Nusselt number in an annular flow between two concentric cylinders with smooth and slotted surface. The heated outer surface is stationary and the unheated inner one is rotating. This configuration is popular in industrial applications such as internal air system of gas turbine engines, cooling of rotating machinery, techniques of chemical vapor deposition and solidification of pure metals. The results show that the ratio of average slotted surface friction factor to that of the smooth one enhances by increasing the slot depth to width ratio... 

    Obtaining uniform cooling on a hot surface by a novel swinging slot impinging jet

    , Article Applied Thermal Engineering ; Volume 150 , 2019 , Pages 781-790 ; 13594311 (ISSN) Bijarchi, M. A ; Eghtesad, A ; Afshin, H ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, a novel 2D laminar Swinging Slot Impinging Jet (SSIJ) on a heated flat surface was investigated using numerical simulation. The impinging jet was introduced to improve the uniform cooling of a hot surface while enhancing the heat transfer rate by disrupting the boundary layer. The impinging jet moves along the target surface similar to the swinging motion of a pendulum. The effects of Reynolds number, dimensionless jet to target distance, maximum angle of swinging, and frequency of jet oscillations were studied, and physics of the new impinging jet were fully discussed. Lastly, optimization was undertaken to search for the optimal variables leading to uniform heat fluxes. A... 

    Nano-Fluid Natural Convection on a Constant Temperature Vertical Plate

    , M.Sc. Thesis Sharif University of Technology Iranmehr, Arash (Author) ; Nouri Boroujerdi, Ali (Supervisor)
    Abstract
    In the present study, Nano-fluid natural convection on a constant temperature vertical plate is numerically investigated, following the similarity analysis of transport equations. After changing the governing differential equations to the ordinary differential equations, they were numerically solved by the fourth order Runge-Kutta method.. The analysis shows that all three main profiles, velocity, temperature and concentration in their specific boundary layers, and the Prandtle number, depend on three important additional dimensionless parameters, namely a Brownian motion parameter, a thermophoresis parameter, and a buoyancy ratio parameter. Finally, it was found that the Nusselt number in... 

    Effects of confining walls on laminar natural convection from a horizontal cylinder

    , Article Proceedings of the Intersociety Energy Conversion Engineering Conference ; Volume 2 , 2000 , Pages 1261-1267 ; 0146955X (ISSN) Sadeghipour, M. S ; Razi, Y. P ; Sharif University of Technology
    2000
    Abstract
    The laminar natural convection from an isothermal horizontal cylinder confined between vertical walls is investigated by experimental and numerical methods. The experimental and numerical data are well correlated, independently, to equations which give the average Nusselt number in terms of the wall spacing to cylinder diameter ratio, t/D, and the Rayleigh number, Ra, for two different values of the wall height to cylinder diameter ratios, H/D=7 and 15.2. For the low Rayleigh numbers considered (Ra<1000), there are certain conditions for the confining walls under which heat transfer from the cylinder is maximum. Results are compared with the reported numerical and/or experimental results... 

    Numerical study of heat transfer between shell-side fluid and shell wall in the spiral-wound heat exchangers

    , Article International Journal of Refrigeration ; Volume 120 , December , 2020 , Pages 285-295 Mostafazade Abolmaali, A ; Afshin, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Heat transfer between heat exchangers and the surrounding environment, referred to as heat-in-leak, is a crucial phenomenon in the cryogenic applications which can substantially degrade the heat exchanger performance. Present research is organized to investigate the mechanism of heat transfer between the shell-side fluid and the shell wall of spiral wound heat exchangers (SWHEs) to determine the heat transfer coefficient used in the heat-in-leak calculations. The heat transfer characteristics are studied using computational fluid dynamics (CFD) tools. First, 20 dissimilar SWHE models with respect to the geometrical parameters are built and then numerically simulated at different Reynolds... 

    Gaseous slip-flow mixed convection through ordered microcylinders

    , Article Journal of Thermophysics and Heat Transfer ; Vol. 28, issue. 1 , 2014 , p. 105-117 Sadeghi, M ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    The fully developed longitudinal slip-flow mixed convection between a periodic bunch of vertical microcylinders arrangedin regular arraysis investigated inthe present work. The two axially constant heat flux boundary conditions of H1 and H2 are considered in the analysis. The rarefaction effects are taken into consideration using first-order slip velocity and temperature jump boundary conditions. The method considered is mainly analytical, in that the governing equations and three of the boundary conditions are exactly satisfied. The remaining symmetry condition on the right-hand boundary of the typical element is applied to the solution through the point-matching technique. The results... 

    Experimental research on heat transfer of water in tubes with conical ring inserts in transient regime

    , Article International Communications in Heat and Mass Transfer ; Volume 38, Issue 5 , 2011 , Pages 668-671 ; 07351933 (ISSN) Anvari, A. R ; Lotfi, R ; Rashidi, A. M ; Sattari, S ; Sharif University of Technology
    2011
    Abstract
    Forced convective of water in horizontal tubes with conical tube inserts has been studied experimentally. The transient flow regime has been used for the tests. Experimental results are validated with existing well established correlation. The turbulators were placed in two different arrangements: converging conical ring, referred to as CR array and diverging conical ring, DR array. Two correlations for the Nusselt number based on the experiment are introduced for practical use. It is found that the insertion of turbulators has enhanced the Nusselt number for the DR arrangement up to 521%, and for the CR arrangement up to 355%, although using the turbulators cause a significant increase in... 

    Second law analysis for extended graetz problem including viscous dissipation in microtubes

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2010 Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, Montreal, QC, 1 August 2010 through 5 August 2010 ; Issue PARTS A AND B , 2010 , Pages 503-514 ; 9780791854501 (ISBN) Sadeghi, A ; Baghani, M ; Saidi, M. H ; Fluids Engineering Division ; Sharif University of Technology
    2010
    Abstract
    The entropy generation rate has become a useful tool for evaluating the intrinsic irreversibilities associated with a given process or device. This work presents an analytical solution for entropy generation in hydrodynamically fully developed thermally developing laminar flow in a microtube. The rarefaction effects as well as viscous heating effects are taken into consideration, but axial conduction is neglected. Using fully developed velocity profile, the energy equation is solved by means of integral transform. The solution is validated by comparing the local Nusselt numbers against existing literature data. From the results it is realized that the entropy generation decreases as Knudsen... 

    Experimental study of parameters affecting the nusselt number of generator rotor and stator

    , Article Heat Transfer Engineering ; Volume 31, Issue 3 , 2010 , Pages 243-249 ; 01457632 (ISSN) Mahdavifar, S. J. E ; Nili Ahmadabadi, M ; Hashemi, A ; Sharif University of Technology
    2010
    Abstract
    In this research, the parameters affecting the Nusselt number of a generator rotor and stator under varying heat transfer rate are experimentally studied. In spite of the stator having no grooves, the rotor has four large triangular grooves. The temperature and then heat transfer rate of the rotor and stator are experimentally measured in three longitudinal and two angular positions. First, the effect of axial Reynolds number and rotor rotational speed on the rotor and stator Nusselt number with constant heat transfer rate ratio is studied. The range of the axial Reynolds number and rotational speed used is from 4000 to 30,000 and from 300 to 1500 rpm, respectively. Next, the effect of... 

    Experimental study of thermal performance and pressure drop in compact heat exchanger installed in automotive

    , Article 2006 Spring Technical Conference of the ASME Internal Combustion Engine Division, Aachen, 7 May 2006 through 10 May 2006 ; 2006 , Pages 551-557 ; 15296598 (ISSN) ; 0791842061 (ISBN); 9780791842065 (ISBN) Saidi, M. H ; Esmaeili Sany, A. R ; Mozafari, A. A ; Neyestani, J ; Sharif University of Technology
    2006
    Abstract
    In this Study, radiator performance for passenger car has been studied experimentally in wide range of operating conditions. Experimental prediction of Nusselt number and heat transfer coefficient for coolant in radiator tubes are also performed with ε-NTU method. The total effectiveness coefficient of radiator and heat transfer coefficient in air side is calculated via try and error method considering experimental data. The Colburn factor and pressure drop are also estimated for this heat exchanger. Examples of application demonstrate the practical usefulness of this method to provide empirical data which can be used during the design stage. Copyright © 2006 by ASME  

    New correlation for natural convection of finned tube A-type air cooler

    , Article Applied Thermal Engineering ; Volume 25, Issue 17-18 , 2005 , Pages 3053-3066 ; 13594311 (ISSN) Farhadi, F ; Davani, N ; Ardalan, P ; Sharif University of Technology
    2005
    Abstract
    The temperature distribution in a finned tube bundle of an A-type air cooler is investigated. The heat transfer is governed by natural convection. By using a special steam condenser the effect of steam pressure on temperature fields formed outside the bank of finned tubes is studied. It is found that the distribution is approximately the same at various pressures with minor differences. The effects of two-phase flow on temperature distribution are also considered. All 3D temperature contours show maximum values, which highly depend on steam pressures. Moreover, asymmetric steam feeding and probable fouling inside the tubes are possible causes of contour shapes. The experimental Nusselt... 

    Control of thermo magnetic heat transfer in porous cavity with Baffle(s)

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 9, Issue PART A , 2010 , Pages 627-631 ; 9780791843826 (ISBN) Heidary, H ; Davoudi, M ; Pirmohammadi, M ; Sharif University of Technology
    Abstract
    Steady, laminar, natural-convection flow in the presence of a magnetic field in a porous cavity heated from left wall sinusoidally and cooled from right wall is considered. It is well known that unavoidable hydrodynamic movements can be damped with the help of a magnetic field. The Finite Volume method and SIMPLE algorithm for discretizing is used to solve the non-dimensional governing equations. The Convection and Diffusion term of the equations are discretized by Central Difference Scheme (CDS).The numerical procedure has been done over a range of Rayleigh number, Ra, and value of Hartmann number (Ha), 0 ≤ Ha ≤ 150 and effect of them is investigated on average and local Nusselt number....