Loading...
Search for: nozzles
0.006 seconds
Total 124 records

    Numerical investigation of nozzle geometry effect on turbulent 3-D water offset jet flows

    , Article Journal of Applied Fluid Mechanics ; Volume 9, Issue 4 , 2016 , Pages 2083-2095 ; 17353572 (ISSN) Mohammad Aliha, N ; Afshin, H ; Farahanieh, B ; Sharif University of Technology
    Isfahan University of Technology  2016
    Abstract
    Using the Yang-Shih low Reynolds k-ε turbulence model, the mean flow field of a turbulent offset jet issuing from a long circular pipe was numerically investigated. The experimental results were used to verify the numerical results such as decay rate of streamwise velocity, locus of maximum streamwise velocity, jet half width in the wall normal and lateral directions, and jet velocity profiles. The present study focused attention on the influence of nozzle geometry on the evolution of a 3D incompressible turbulent offset jet. Circular, square-shaped, and rectangular nozzles were considered here. A comparison between the mean flow characteristics of offset jets issuing from circular and... 

    Numerical study on the effects of creating rotationary flow inside the injector nozzle and changing fuel injection angle on the performance and emission of caterpillar diesel engine

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 44, Issue 1 , 2022 ; 16785878 (ISSN) Farajollahi, A. H ; Firuzi, R ; Rostami, M ; Mardani, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    One way of improving the performance of diesel engines is to produce modifications in the fuel supply systems. In this article, the effects of creating rotationary flow inside the nozzle and changing fuel injection angle on the performance and emission of caterpillar diesel engine have been examined in two separate stages using AVL FIRE software. First, the injector and its spray have been simulated with various geometries. The numerical results of this step indicate that creating rotationary flow inside the nozzle decreases the penetration length, while increases fuel spray cone angle and improves atomization quality. In the subsequent step, the diesel engine has been simulated with its... 

    Rapid depressurization dynamics of solid propellant rocket motors

    , Article 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, 8 July 2007 through 11 July 2007 ; Volume 8 , 2007 , Pages 7871-7879 ; 1563479036 (ISBN); 9781563479038 (ISBN) Tahsini, A. M ; Farshchi, M ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2007
    Abstract
    Transient internal ballistics of a solid propellant rocket motor during rapid depressurization due to opening of an auxiliary nozzle for active thrust termination has been considered in this work. Prediction of thrust termination and reversing dynamics is required for successful stage separation in multi-stage rockets. Quasi one-dimensional unsteady Euler equation with a transient propellant burning model that accounts for the effects of time rate of change of the chamber pressure on the burning rate have been used to simulate the internal ballistics of a rocket motor. The compressible convective flow solver used in this study is based on Roe's scheme. The effects of rapid chamber pressure... 

    Failure analysis of a repaired gas turbine nozzle

    , Article Engineering Failure Analysis ; 13506307 (ISSN) Kazempour Liacy, H ; Abouali, S ; Akbari Garakani, M ; Sharif University of Technology

    Swirl intensity as a control mechanism for methane purification in supersonic gas separators

    , Article Journal of Natural Gas Science and Engineering ; Volume 83 , 2020 Ghorbanian, K ; Amini Magham, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Supersonic gas separator is proposed for methane purification. One-dimensional analysis is performed to examine the design aspects associated with the converging-diverging nozzle and the liquid separation chamber. The results indicate that at low swirl intensities, the separation chamber length is about 100 times of the nozzle throat. Increasing the swirl intensity would lower this length sharply and it will be less than 10 for swirl intensity of unity which is equivalent to a swirl angle of 45°. In addition, a sensitivity analysis of the separator performance to the inlet conditions like the temperature, pressure, and composition of the mixture is carried out. It is observed that increasing... 

    Numerical optimization of three-cavity magneto mercury reciprocating (MMR) micropump

    , Article Engineering Applications of Computational Fluid Mechanics ; Volume 15, Issue 1 , 2021 , Pages 1954-1966 ; 19942060 (ISSN) Mehrabi, A ; Mofakham, A. A ; Shafii, M. B ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    The operation of the three-cavity magneto mercury reciprocating (MMR) micropump, whose prototype were presented in an earlier companion paper, was numerically explored. In the three-cavity MMR micropump, three mercury slugs are moved by a periodic Lorentz force with a phase difference in three separate cavities. A consecutive motion of the slugs in their cavities transfer air from the inlet to the outlet. Two-dimensional OpenFOAM simulations were carried out to explore the influence of electric current excitation phase difference and back-pressure. The numerical simulations predicted the MMR micropump (with no valve) with a phase difference of (Formula presented.) and (Formula presented.)... 

    A new design of continuous coaxial nozzle for direct metal deposition process to overcome the gravity effect

    , Article Progress in Additive Manufacturing ; 2021 ; 23639512 (ISSN) Nasiri, M. T ; Movahhedy, M. R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In the metal deposition process, the performance of the nozzle is crucial to the quality of clad. Continuous coaxial nozzles are broadly used in this process for repairing two- and three-dimensional parts, because it can create a homogeneous distribution of powder particles. In addition, an inert gas can be applied using this type of nozzles which shields powder particles and laser interaction zone, and prevents the surface from oxidizing at high process temperatures. However, when this type of nozzle is tilted from the vertical axis for cladding non-horizontal surfaces, the effect of gravity on powder particles affects the uniformity of powder distribution at the nozzle outlet. This matter... 

    A new design of continuous coaxial nozzle for direct metal deposition process to overcome the gravity effect

    , Article Progress in Additive Manufacturing ; Volume 7, Issue 2 , 2022 , Pages 173-186 ; 23639512 (ISSN) Nasiri, M. T ; Movahhedy, M. R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In the metal deposition process, the performance of the nozzle is crucial to the quality of clad. Continuous coaxial nozzles are broadly used in this process for repairing two- and three-dimensional parts, because it can create a homogeneous distribution of powder particles. In addition, an inert gas can be applied using this type of nozzles which shields powder particles and laser interaction zone, and prevents the surface from oxidizing at high process temperatures. However, when this type of nozzle is tilted from the vertical axis for cladding non-horizontal surfaces, the effect of gravity on powder particles affects the uniformity of powder distribution at the nozzle outlet. This matter... 

    Simulation approach to investigate the effect of the jet structure and air pressure on the performance of siro-jet spinning

    , Article Fibres and Textiles in Eastern Europe ; Volume 92, Issue 3 , 2012 , Pages 46-50 ; 12303666 (ISSN) Hasani, H ; Hasani, M ; Sharif University of Technology
    2012
    Abstract
    In this paper, the effects of different parameters on the hairiness of siro-jet spun yarns, such as the nozzle pressure, the distance between the front roller nip and inlet of the nozzle, and jet structure were investigated. Using the Taguchi method, it was concluded that the factor air pressure has the strongest effect and the factor distance between the front roller nip and inlet of the nozzle does not have a significant effect on the performance of the siro-jet spinning system in reducing yarn hairiness. A computational fluid dynamics model was developed to simulate the airflow pattern inside the jets. The effect of air pressure and the jet structure was simulated using Fluent 6.3... 

    An experimental study on combustion dynamics and NOx emission of a swirl stabilized combustor with secondary fuel injection

    , Article Journal of Thermal Science and Technology ; 2010 , Pages 266-281 ; 18805566 (ISSN) Riaz, R ; Farshchi, M ; Shimura, M ; Tanahashi, M ; Miyauchi, T ; Sharif University of Technology
    2010
    Abstract
    To investigate the effects of flow rate, diameter and offset of secondary fuel injection on combustor noise level, pressure fluctuation and NOx emission, four types of injectors were examined in a swirl-stabilized combustor for overall equivalence ratio (Ø) of 0.7 ~ 0.9 and flow rate of secondary fuel (Qsec) from 0.6 to 4.2 L/min. As for the reference injector used in previous related studies, secondary fuel injection of 3.0 L/min is the best condition for the reduction of pressure fluctuation and combustion noise with tolerable NOx emission. For lower secondary fuel rate of 1.8 L/min, reduction of the injection diameter of reference injector results in a better performance in terms of... 

    Numerical investigation of thermal performance augmentation of nanofluid flow in microchannel heat sinks by using of novel nozzle structure: sinusoidal cavities and rectangular ribs

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 41, Issue 10 , 2019 ; 16785878 (ISSN) Khodabandeh, E ; Akbari, O. A ; Toghraie, D ; Pour, M. S ; Jönsson, P. G ; Ersson, M ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    In this paper, we present a numerical simulation of a laminar, steady and Newtonian flow of f-graphene nanoplatelet/water nanofluid in a new microchannel design with factors for increasing heat transfer such as presence of ribs, curves to enable satisfactory fluid mixing and changing fluid course at the inlet and exit sections. The results of this study show that Nusselt number is dependent on nanoparticles concentration, inlet geometry and Reynolds number. As the nanofluid concentration increases from 0 to 0.1% and Reynolds number from 50 to 1000, the Nusselt number enhances nearly up to 3% for increase in fluid concentration and averagely from 15.45 to 54.1 and from 14.5 to 55.9 for... 

    Numerical investigation of injection angle effects on shock vector control performance

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 233, Issue 2 , 2019 , Pages 405-417 ; 09544100 (ISSN) Forghany, F ; Taeibe Rahni, M ; Asadollahi Ghohieh, A ; Banazdeh, A ; Sharif University of Technology
    SAGE Publications Ltd  2019
    Abstract
    The present research paper attempted to utilize a computational investigation for optimizing the fluidic injection angle effects on thrust vectoring. Simulation of a convergent divergent nozzle with shock-vector control method was performed, using URANS approach with Spalart–Allmaras turbulence model. The variable fluidic injection angle is investigated at different aerodynamic and geometric conditions. The current investigation demonstrated that injection angle is an essential parameter in fluidic thrust vectoring. Computational results indicate that optimizing injection angle would improve the thrust vectoring performance. Moreover, dynamic response of starting thrust vectoring would... 

    Numerical investigation of second throat exhaust diffuser performance with thrust optimized parabolic nozzles

    , Article Aerospace Science and Technology ; Volume 105 , 2020 Fouladi, N ; Farahani, M ; Sharif University of Technology
    Elsevier Masson SAS  2020
    Abstract
    Free or restricted shock separation phenomena can occur inside a thrust optimized parabolic (TOP) nozzle during over-expanded operations. In the case of restricted shock separation, a cap shock pattern forms in the nozzle which leads to a substantial total pressure drop. This induces further related issues in the process of ground testing of such nozzles using a second throat exhaust diffuser (STED). In the present study, the flow physics in several TOP nozzles operating at over-expanded conditions is investigated numerically. At first, the strong effect of the initial expansion angle of a TOP nozzle on flow separation pattern and shock structure is demonstrated. Results reveal that for high... 

    Failure analysis of first stage nozzle in a heavy-duty gas turbine

    , Article Engineering Failure Analysis ; Volume 109 , January , 2020 Mirhosseini, A. M ; Adib Nazari, S ; Maghsoud Pour, A ; Etemadi Haghighi, S ; Zareh, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    First stage nozzles are considered as one of the most critical components in the heavy-duty gas turbines because of their operational in-service condition in the hot gas path. In the present research, the failure analysis of a first stage nozzle in a 159 MW gas turbine is investigated in order to specify the modes and mechanisms of the failure and their root causes. Various examinations including macroscopic and visual inspection of the nozzle outer surface, the micro examination of the fracture surface, chemical analysis and metallographic analysis were carried out to complete the investigation. The micro and macro examinations revealed cracks, erosion and oxidation damages in the nozzle... 

    Exprimental Study of Various Modes of Electrospray for Different Nozzles

    , M.Sc. Thesis Sharif University of Technology Pejman, Rahman (Author) ; Morad, Mohammad Reza (Supervisor)
    Abstract
    Electrospray is an interesting method to produce spray. This study has an insight on electrospraying phenomenon and its effective parameters. All modes, the forces and the situation to establish has been investigated for ethanol. Suitable configuration is introduced and for different flow rates and voltages the phenomenon is studied. Images are captured by two camera (high speed camera and high resolution camera) by using two method (shadowgraphy and light scattering). In the respect of producing fine and monodisperse droplets in cone-jet mode the stability of this mode is imported to enlarge. The special nozzle is design to increase stability of cone-jet mode even 70 times of using... 

    Investigation of Water Mist Performance on Firefighting in Underground Parking Lots

    , M.Sc. Thesis Sharif University of Technology Motaharpour, Hossein (Author) ; Farhanieh, Bijan (Supervisor) ; Afshin, Hossein (Supervisor)
    Abstract
    Fire is an undesirable phenomenon that causes human and financial losses. This in itself is a dangerous event that becomes even more dangerous in closed spaces. Car fires in underground car parks are no exception. In this research, the fire caused by burning flammable materials inside the car cabin located in a closed underground parking environment and the performance of sprinkler and water mist nozzles in controlling and extinguishing it have been investigated. Based on the broad foundations of various phenomena affecting this problem, including the separation of solid fuels under the influence of heat and oxygen, chemical reactions, radiant heat transfer and change of liquid phase to... 

    An investigation of empirical formulation and design optimisation of co-flow fluidic thrust vectoring nozzles

    , Article Aeronautical Journal ; Volume 121, Issue 1236 , 2017 , Pages 213-236 ; 00019240 (ISSN) Banazadeh, A ; Saghafi, F ; Sharif University of Technology
    Cambridge University Press  2017
    Abstract
    The purpose of this paper is to design and develop an advanced co-flow fluidic nozzle, based on the Coanda effect concept, for multi-directional thrust vectoring of small jet engines. Recent progress on finding an optimal geometry with a fixed momentum ratio to achieve maximum thrust deflection angle is discussed here. The efficiency of the system is found to be a weakly nonlinear function of the secondary to primary flow momentum as well as three geometric parameters. A useful empirical formulation is derived for thrust vectoring angle, based on a series of tests carried out on different nozzles. An accurate computational fluid dynamics model is also developed and evaluated against the... 

    Investigation and Validation of Combined Turbine and Nozzle Design Changes on performances

    , Ph.D. Dissertation Sharif University of Technology Asgarshamsi, Abolhassan (Author) ; Hajilouy Benisi, Ali (Supervisor) ; Pourfarzaneh, Hossein (Co-Advisor)
    Abstract
    In this thesis, the rear part of a turbo-jet engine consisting of a one stage axial turbine and its exhaust nozzle are optimized numerically and experimentally. The decrease of total pressure loss of the flow in the stator and rotor blade cascades is investigated by change of two-dimensional profiles. The three-dimensional blade shape optimization is employed to study the effects of the axial turbine stator and rotor lean and sweep angles as well as radial distributions of stagger angle on the turbine performance. In adition, the effect of the turbo-jet engine exhaust nozzle on its performance is explored. Geometry candidates for the three-dimensional optimization algorithm of the axial... 

    Simulation of turbulent swirling flow in convergent nozzles

    , Article Scientia Iranica ; Volume 19, Issue 2 , 2012 , Pages 258-265 ; 10263098 (ISSN) Nouri-Borujerdi, A ; Kebriaee, A ; Sharif University of Technology
    Abstract
    This work simulates the turbulent boundary layer of an incompressible viscous swirling flow through a conical chamber. To model the pressure gradient normal to the wall, the radial and tangential velocity components across the boundary layer have been calculated by both the integral and numerical methods. The numerical solution is accomplished by finite difference, based on the finite volume method. The results show that the radial and tangential boundary layer thicknesses depend on the velocity ratios, Reynolds number and nozzle angle. The peak of radial and tangential boundary layer thicknesses are located at zL≈0.2 and zL≈0.8 from the nozzle inlet, respectively. Due to the short length of... 

    Investigation of mass transfer coefficient under jetting conditions in a liquid-liquid extraction system

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 29, Issue 1 , 2010 , Pages 1-12 ; 10219986 (ISSN) Nosratinia, F ; Omidkhah, M. R ; Bastani, D ; Saifkordi, A. A ; Sharif University of Technology
    Abstract
    In this research mass transfer coefficient under jetting regime in different directions (from dispersed to continuous and continuous to dispersed phase) has been studied using an experimental setup. n-Butanol-succinic acid-water with low interfacial tension has been selected as experimental chemical system. The effects of various parameters such as jet velocity, nozzle diameter and the height of the continuous phase above the nozzle, on mass transfer coefficient have been investigated. A correlation has also been derived in order to predict the mass transfer coefficient as a function of physical properties of both phases and aforementioned parameters. Based on the experimental results, mass...