Loading...
Search for: no-slip-boundary-conditions
0.005 seconds

    Effect of liquid viscosity on instability of high-spinning partially-filled shell rotors

    , Article International Journal of Structural Stability and Dynamics ; Volume 13, Issue 6 , 2013 ; 02194554 (ISSN) Firouz Abadi, R. D ; Permoon, M. R ; Sharif University of Technology
    2013
    Abstract
    In this study, the instability of spinning cylindrical shells partially filled with viscous liquid is investigated. Based on the Navier-Stokes equations for the incompressible flow, a 2D model is developed for liquid motion at each section of the cylinder. The governing equations of the cylinder vibrations are obtained based on the first-order shear deformable shell theory. The nonpenetration and no-slip boundary conditions of the flow on the wetted surface of the cylinder relate the liquid motion to the shell vibrations. Also the liquid pressure exerted on the cylinder wall combines the vibrations of the rotary cylinder to the liquid motion. By using the obtained coupled liquid-structure... 

    A modified SPH method for simulating motion of rigid bodies in Newtonian fluid flows

    , Article International Journal of Non-Linear Mechanics ; Volume 47, Issue 6 , 2012 , Pages 626-638 ; 00207462 (ISSN) Hashemi, M. R ; Fatehi, R ; Manzari, M. T ; Sharif University of Technology
    2012
    Abstract
    A weakly compressible smoothed particle hydrodynamics (WCSPH) method is used along with a new no-slip boundary condition to simulate movement of rigid bodies in incompressible Newtonian fluid flows. It is shown that the new boundary treatment method helps to efficiently calculate the hydrodynamic interaction forces acting on moving bodies. To compensate the effect of truncated compact support near solid boundaries, the method needs specific consistent renormalized schemes for the first and second-order spatial derivatives. In order to resolve the problem of spurious pressure oscillations in the WCSPH method, a modification to the continuity equation is used which improves the stability of... 

    A systematic method for the complex walls no-slip boundary condition modeling in dissipative particle dynamics

    , Article Scientia Iranica ; Volume 18, Issue 6 , December , 2011 , Pages 1253-1260 ; 10263098 (ISSN) Mehboudi, A ; Saidi, M. S ; Sharif University of Technology
    2011
    Abstract
    The dissipative particle dynamics method is an efficient method for studying the hydrodynamics of complex fluids. One of the most challenging aspects of this method appears when the solid walls exist. The solid walls disturb the homogeneity of the fluid near the wall and cause some spurious fluctuations. Thus, in recent years a large amount of effort has been devoted to solve this shortcoming. Fortunately the mentioned problem has almost been solved for the simple walls such as flat walls, circular cylinders, spheres, etc. However no systematic model has addressed the complex walls. It should be noted that almost all of the walls we deal with in practical problems such as MEMS devices,... 

    Three-dimensional numerical simulation of rising bubbles in the presence of cylindrical obstacles, using lattice boltzmann method

    , Article Journal of Molecular Liquids ; Volume 236 , 2017 , Pages 151-161 ; 01677322 (ISSN) Alizadeh, M ; Seyyedi, S. M ; Taeibi Rahni, M ; Ganji, D. D ; Sharif University of Technology
    Abstract
    A typical process in many industrial applications is rising bubble dynamic in viscous liquids like two-phase reactors. Examining the physical behavior of bubbles may improve the understanding of systems regarding design and operation. This study focused on the splitting of bubbles resulting from their impact on solid obstacles. Fragmentation of the bubbles appears in many applications such as lab on a chip in small scale or slug bubbly flow moving upward in a tube in large scales. Using a new index-function model in Lattice Boltzmann technique proposed by “He”, we simulated the deformation and motion of a bubble in different regimes, through which, we accurately captured a sharp interface... 

    Transient analysis of falling cylinder in non-Newtonian fluids: further opportunity to employ the benefits of SPH method in fluid-structure problems

    , Article Chemical Product and Process Modeling ; Volume 12, Issue 1 , 2017 ; 21946159 (ISSN) Kamyabi, M ; Ramazani Saadat Abadi, A ; Kamyabi, A ; Sharif University of Technology
    Walter de Gruyter GmbH  2017
    Abstract
    Smoothed particle hydrodynamics (SPH) was applied to simulate the free falling of cylindrical bodies in three types of fluids including Newtonian, generalized-Newtonian and viscoelastic fluids. Renormalized derivation schemes were used because of their consistency in combination with the latest version of no slip boundary condition to improve the handling of moving fluid-structure interactions (FSIs). Verification of the method was performed through comparing the results of some benchmark examples for both single and two phase flows with the literature. The effects of some parameters such as the viscosity of the Newtonian fluid, the n index of the power-law fluid and the relaxation time of... 

    Magneto-mechanical stability of axially functionally graded supported nanotubes

    , Article Materials Research Express ; Volume 6, Issue 12 , 2019 ; 20531591 (ISSN) Ebrahimi Mamaghani, A ; Mirtalebi, H ; Ahmadian, M. T ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    In this paper, size-dependent vibration analysis of axially functionally graded (AFG) supported nanotubes conveying nanoflow under longitudinal magnetic fields are performed, aiming at performance improvement of fluid-interaction nanosystems. Either the density or the elastic modulus of the AFG nanotube varies linearly or exponentially along the axial direction. Based on the nonlocal continuum theory, the higher-order dynamical equation of motion of the system is derived considering no-slip boundary condition. Galerkin discretization technique and eigenvalue analysis are implemented to solve the modeled equation. The validity of the simplified model is justified by comparing the results with... 

    Magneto-mechanical stability of axially functionally graded supported nanotubes

    , Article Materials Research Express ; Volume 6, Issue 12 , 2019 ; 20531591 (ISSN) Ebrahimi Mamaghani, A ; Mirtalebi, H ; Ahmadian, M. T ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    In this paper, size-dependent vibration analysis of axially functionally graded (AFG) supported nanotubes conveying nanoflow under longitudinal magnetic fields are performed, aiming at performance improvement of fluid-interaction nanosystems. Either the density or the elastic modulus of the AFG nanotube varies linearly or exponentially along the axial direction. Based on the nonlocal continuum theory, the higher-order dynamical equation of motion of the system is derived considering no-slip boundary condition. Galerkin discretization technique and eigenvalue analysis are implemented to solve the modeled equation. The validity of the simplified model is justified by comparing the results with... 

    Pore-scale simulation of fluid flow passing over a porously covered square cylinder located at the middle of a channel, using a hybrid MRT-LBM–FVM approach

    , Article Theoretical and Computational Fluid Dynamics ; Volume 29, Issue 3 , 2015 , Pages 171-191 ; 09354964 (ISSN) Salimi, M. R ; Taeibi Rahni, M ; Jam, F ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    A comprehensive study was performed to analyze the unsteady laminar flow characteristics around a porously covered, a fully porous, and a solid squared section cylinder located in the middle of a plane channel. In order to simulate fluid flow inside porous media and porous–fluid interface accurately (minimizing modeling error), the porous region was analyzed in pore scale, using LBM. Additionally, to minimize the LBM-related compressibility error through the porous region, a multi-block multiple relaxation time lattice Boltzmann method (MRT-LBM) was used. Also, to decrease CPU time, a Navier–Stokes flow solver, based on finite volume method and SIMPLE algorithm, was coupled with MRT-LBM to... 

    Transport in droplet-hydrogel composites: response to external stimuli

    , Article Colloid and Polymer Science ; Volume 293, Issue 3 , March , 2015 , Pages 941-962 ; 0303402X (ISSN) Mohammadi, A ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Determination of effective transport properties of droplet-hydrogel composites is essential for various applications. The transport of ions through a droplet-hydrogel composite subjected to an electric field is theoretically studied as an initial step toward quantifying the effective transport properties of droplet-hydrogel composites. A three-phase electrokinetic model is used to derive the microscale characteristics of the polyelectrolyte hydrogel, and the droplet is considered an incompressible Newtonian fluid. The droplet-hydrogel interface is modeled as a surface, which encloses the interior fluid. The surface has the thickness of zero and the electrostatic potential ζ. Standard...